Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
64
result(s) for
"Lenderink, Geert"
Sort by:
Increase in hourly precipitation extremes beyond expectations from temperature changes
by
Lenderink, Geert
,
van Meijgaard, Erik
in
Climate models
,
Earth and Environmental Science
,
Earth Sciences
2008
Changes in precipitation extremes under greenhouse warming are commonly assumed to be constrained by the Clausius–Clapeyron relationship, implying an increase in extreme precipitation of 7% per degree of climate warming. An analysis of 99 years of observations along with simulations with a regional climate model show that short-duration precipitation extremes can instead increase in severity twice as fast, by 14% per degree of warming.
Changes in precipitation extremes under greenhouse warming are commonly assumed to be constrained by changes in the amounts of precipitable water in the atmosphere
1
,
2
,
3
,
4
. Global climate models generally predict only marginal changes in relative humidity
5
, implying that the actual amount of atmospheric precipitable water scales with the water vapour content of saturation, which is governed by the Clausius–Clapeyron relation. Indeed, changes in daily precipitation extremes in global climate models seem to be consistent with the 7% increase per degree of warming given by the Clausius–Clapeyron relation
3
,
4
, but it is uncertain how general this scaling behaviour is across timescales. Here, we analyse a 99-year record of hourly precipitation observations from De Bilt, the Netherlands, and find that one-hour precipitation extremes increase twice as fast with rising temperatures as expected from the Clausius–Clapeyron relation when daily mean temperatures exceed 12
∘
C. In addition, simulations with a high-resolution regional climate model show that one-hour precipitation extremes increase at a rate close to 14% per degree of warming in large parts of Europe. Our results demonstrate that changes in short-duration precipitation extremes may well exceed expectations from the Clausius–Clapeyron relation. These short-duration extreme events can have significant impacts, such as local flooding, erosion and water damage.
Journal Article
Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes
by
Lenderink, Geert
,
van Meijgaard, Erik
in
Atmospheric temperature
,
Climate change
,
Climate models
2010
Relations between hourly precipitation extremes and atmospheric temperature and moisture derived for the present-day climate are studied with the aim of understanding the behavior (and the uncertainty in predictions) of hourly precipitation extremes in a changing climate. A dependency of hourly precipitation extremes on the daily mean 2m temperature of approximately two times the Clausius–Clapeyron (CC) relation is found for temperatures above 10 °C. This is a robust relation obtained in four observational records across western Europe. A dependency following the CC relation can be explained by the observed increase in atmospheric (absolute) humidity with temperature, whereas the enhanced dependency (compared to the CC relation) appears to be caused by dynamical feedbacks owing to excess latent heat release in extreme showers. Integrations with the KNMI regional climate model RACMO2 at 25km grid spacing show that changes in hourly precipitation extremes may indeed considerably exceed the prediction from the CC relation. The results suggests that increases of + 70% or even more are possible by the end of this century. However, a different regional model (CLM operated at ETHZ) predicts much smaller increases; this is probably caused by a too strong sensitivity of this model to a decrease in relative humidity.
Journal Article
A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands
2015
Scenarios of future changes in small scale precipitation extremes for the Netherlands are presented. These scenarios are based on a new approach whereby changes in precipitation extremes are set proportional to the change in water vapor amount near the surface as measured by the 2m dew point temperature. This simple scaling framework allows the integration of information derived from: (i) observations, (ii) a new unprecedentedly large 16 member ensemble of simulations with the regional climate model RACMO2 driven by EC-Earth, and (iii) short term integrations with a non-hydrostatic model Harmonie. Scaling constants are based on subjective weighting (expert judgement) of the three different information sources taking also into account previously published work. In all scenarios local precipitation extremes increase with warming, yet with broad uncertainty ranges expressing incomplete knowledge of how convective clouds and the atmospheric mesoscale circulation will react to climate change.
Journal Article
Detection of continental-scale intensification of hourly rainfall extremes
by
Westra, Seth
,
Fowler, Hayley J
,
Lewis, Elizabeth
in
Climate change
,
Daily precipitation
,
Datasets
2018
Temperature scaling studies suggest that hourly rainfall magnitudes might increase beyond thermodynamic expectations with global warming1–3; that is, above the Clausius–Clapeyron (CC) rate of ~6.5% °C−1. However, there is limited evidence of such increases in long-term observations. Here, we calculate continental-average changes in the magnitude and frequency of extreme hourly and daily rainfall observations from Australia over the years 1990–2013 and 1966–1989. Observed changes are compared with the uncertainty from natural variability and expected changes from CC scaling as a result of global mean surface temperature change. We show that increases in daily rainfall extremes are consistent with CC scaling, but are within the range of natural variability. In contrast, changes in the magnitude of hourly rainfall extremes are close to or exceed double the expected CC scaling, and are above the range of natural variability, exceeding CC × 3 in the tropical region (north of 23° S). These continental-scale changes in extreme rainfall are not explained by changes in the El Niño–Southern Oscillation or changes in the seasonality of extremes. Our results indicate that CC scaling on temperature provides a severe underestimate of observed changes in hourly rainfall extremes in Australia, with implications for assessing the impacts of extreme rainfall.
Journal Article
The HARMONIE–AROME Model Configuration in the ALADIN–HIRLAM NWP System
by
Muñoz, Daniel Santos
,
Homleid, Mariken
,
Køltzow, Morten Ødegaard
in
Adaptation
,
Aerosols
,
Algorithms
2017
The aim of this article is to describe the reference configuration of the convection-permitting numerical weather prediction (NWP) model HARMONIE-AROME, which is used for operational short-range weather forecasts in Denmark, Estonia, Finland, Iceland, Ireland, Lithuania, the Netherlands, Norway, Spain, and Sweden. It is developed, maintained, and validated as part of the shared ALADIN–HIRLAM system by a collaboration of 26 countries in Europe and northern Africa on short-range mesoscale NWP. HARMONIE–AROME is based on the model AROME developed within the ALADIN consortium. Along with the joint modeling framework, AROME was implemented and utilized in both northern and southern European conditions by the above listed countries, and this activity has led to extensive updates to the model’s physical parameterizations. In this paper the authors present the differences in model dynamics and physical parameterizations compared with AROME, as well as important configuration choices of the reference, such as lateral boundary conditions, model levels, horizontal resolution, model time step, as well as topography, physiography, and aerosol databases used. Separate documentation will be provided for the atmospheric and surface data-assimilation algorithms and observation types used, as well as a separate description of the ensemble prediction system based on HARMONIE–AROME, which is called HarmonEPS.
Journal Article
The first multi-model ensemble of regional climate simulations at kilometer-scale resolution part 2: historical and future simulations of precipitation
2021
This paper presents the first multi-model ensemble of 10-year, “convection-permitting” kilometer-scale regional climate model (RCM) scenario simulations downscaled from selected CMIP5 GCM projections for historical and end of century time slices. The technique is to first downscale the CMIP5 GCM projections to an intermediate 12–15 km resolution grid using RCMs, and then use these fields to downscale further to the kilometer scale. The aim of the paper is to provide an overview of the representation of the precipitation characteristics and their projected changes over the greater Alpine domain within a Coordinated Regional Climate Downscaling Experiment Flagship Pilot Study and the European Climate Prediction system project, tasked with investigating convective processes at the kilometer scale. An ensemble of 12 simulations performed by different research groups around Europe is analyzed. The simulations are evaluated through comparison with high resolution observations while the complementary ensemble of 12 km resolution driving models is used as a benchmark to evaluate the added value of the convection-permitting ensemble. The results show that the kilometer-scale ensemble is able to improve the representation of fine scale details of mean daily, wet-day/hour frequency, wet-day/hour intensity and heavy precipitation on a seasonal scale, reducing uncertainty over some regions. It also improves the representation of the summer diurnal cycle, showing more realistic onset and peak of convection. The kilometer-scale ensemble refines and enhances the projected patterns of change from the coarser resolution simulations and even modifies the sign of the precipitation intensity change and heavy precipitation over some regions. The convection permitting simulations also show larger changes for all indices over the diurnal cycle, also suggesting a change in the duration of convection over some regions. A larger positive change of frequency of heavy to severe precipitation is found. The results are encouraging towards the use of convection-permitting model ensembles to produce robust assessments of the local impacts of future climate change.
Journal Article
Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability?
by
Bart J J M van den Hurk
,
Lenderink, Geert
,
Erik van Meijgaard
in
Atmospheric models
,
Chaos theory
,
Climate change
2018
High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—‘noise’, intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM–GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.
Journal Article
Understanding Convective Extreme Precipitation Scaling Using Observations and an Entraining Plume Model
by
Loriaux, Jessica M.
,
Lenderink, Geert
,
Siebesma, A. Pier
in
Adiabatic
,
Adiabatic flow
,
Atmospheric stability
2013
Previously observed twice-Clausius–Clapeyron (2CC) scaling for extreme precipitation at hourly time scales has led to discussions about its origin. The robustness of this scaling is assessed by analyzing a subhourly dataset of 10-min resolution over the Netherlands. The results confirm the validity of the previously found 2CC scaling for extreme convective precipitation. Using a simple entraining plume model, an idealized deep convective environmental temperature profile is perturbed to analyze extreme precipitation scaling from a frequently used relation based on the column condensation rate. The plume model simulates a steady precipitation increase that is greater than Clausius–Clapeyron scaling (super-CC scaling). Precipitation intensity increase is shown to be controlled by a flux of moisture through the cloud base and in-cloud lateral moisture convergence. Decomposition of this scaling relation into a dominant thermodynamic and additional dynamic component allows for better understanding of the scaling and demonstrates the importance of vertical velocity in both dynamic and thermodynamic scaling. Furthermore, systematically increasing the environmental stability by adjusting the temperature perturbations from constant to moist adiabatic increase reveals a dependence of the scaling on the change in environmental stability. As the perturbations become increasingly close to moist adiabatic, the scaling found by the entraining plume model decreases to CC scaling. Thus, atmospheric stability changes, which are expected to be dependent on the latitude, may well play a key role in the behavior of precipitation extremes in the future climate.
Journal Article
Large-Scale Controls on Extreme Precipitation
by
Loriaux, Jessica M.
,
Lenderink, Geert
,
Siebesma, A. Pier
in
Area
,
Atmosphere
,
Atmospheric precipitations
2017
Large-eddy simulations with strong lateral forcing representative of precipitation over the Netherlands are performed to investigate the influence of stability, relative humidity (RH), and moisture convergence on precipitation. Furthermore, a simple climate perturbation is applied to analyze the precipitation response to increasing temperatures. Precipitation is decomposed to distinguish between processes affecting the precipitating area and the precipitation intensity. It is shown that amplification of the moisture convergence and destabilization of the atmosphere both lead to an increase in precipitation, but on account of different effects: atmospheric stability mainly influences the precipitation intensity, whereas the moisture convergence mainly controls the precipitation area fraction. Extreme precipitation intensities show qualitatively similar sensitivities to atmospheric stability and moisture convergence. Precipitation increases with RH due to an increase in area fraction, despite a decrease in intensity. The precipitation response to the climate perturbation shows a stronger response for the precipitation intensity than the overall precipitation, with no clear dependency on changes in atmospheric stability, moisture covergence, and relative humidity.
Journal Article
Northwestern Mediterranean Heavy Precipitation Events in a Warmer Climate: Robust Versus Uncertain Changes With a Large Convection‐Permitting Model Ensemble
2024
Taking advantage of a large ensemble of Convection Permitting‐Regional Climate Models on a pan‐Alpine domain and of an object‐oriented dedicated analysis, this study aims to investigate future changes in high‐impact fall Mediterranean Heavy Precipitation Events at high warming levels. We identify a robust multi‐model agreement for an increased frequency from central Italy to the northern Balkans combined with a substantial extension of the affected areas, for a dominant influence of the driving Global Climate Models for projecting changes in the frequency, and for an increase in intensity, area, volume and severity over the French Mediterranean. However, large quantitative uncertainties persist despite the use of convection‐permitting models, with no clear agreement in frequency changes over southeastern France and a large range of plausible changes in events' properties, including for the most intense events. Model diversity and international coordination are still needed to provide policy‐relevant climate information regarding precipitation extremes. Plain Language Summary Despite growing computational resources and multiple model developments, projecting future changes in the high‐impact Mediterranean Heavy Precipitation Events remains both a numerical and scientific challenge. The present study takes advantage of the recent availability of a relatively large ensemble of high resolution Regional Climate Models (2–3 km), which represent a step change in the simulation of precipitation extremes, and of an object‐oriented approach, allowing us to track the convective precipitating systems on an hourly basis. Looking at future changes in fall Mediterranean Heavy Precipitation Events at high warming levels, we identify a robust multi‐model agreement for an increased frequency from central Italy to the northern Balkans combined with a substantial expansion of the affected areas, and an increase in intensity, area, volume and severity over the French Mediterranean. However, considerable uncertainties remain in terms of frequency over parts of the domain arising from uncertainty in changes in large scale weather patterns, and in terms of degree of intensification for the most intense events. It suggests the need for model diversity and for more coordinated high resolution climate projections with careful selection of different driving global models in order to provide policy‐relevant climate information regarding precipitation extremes. Key Points High‐resolution ensemble and object‐oriented approach offer a unique opportunity to study changes in Mediterranean extreme precipitation Robust agreement is found for an increase in intensity, volume and severity for future French Mediterranean Heavy Precipitation Events Even at convection‐permitting scale, considerable uncertainty remains regarding the degree of intensification of the most extreme events
Journal Article