Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
16
result(s) for
"Leonarduzzi, Gabriella"
Sort by:
A Crosstalk Between Brain Cholesterol Oxidation and Glucose Metabolism in Alzheimer’s Disease
by
Testa, Gabriella
,
Giannelli, Serena
,
Gamba, Paola
in
Alzheimer's disease
,
Angiotensin
,
Apolipoproteins
2019
In Alzheimer's disease (AD), both cholesterol and glucose dysmetabolism precede the onset of memory deficit and contribute to the disease's progression. It is indeed now believed that oxidized cholesterol in the form of oxysterols and altered glucose uptake are the main triggers in AD affecting production and clearance of Aβ, and tau phosphorylation. However, only a few studies highlight the relationship between them, suggesting the importance of further extensive studies on this topic. Recently, a molecular link was demonstrated between cholesterol oxidative metabolism and glucose uptake in the brain. In particular, 27-hydroxycholesterol, a key linker between hypercholesterolemia and the increased AD risk, is considered a biomarker for reduced glucose metabolism. In fact, its excess increases the activity of the renin-angiotensin system in the brain, thus reducing insulin-mediated glucose uptake, which has a major impact on brain functioning. Despite this important evidence regarding the role of 27-hydroxycholesterol in regulating glucose uptake by neurons, the involvement of other cholesterol oxidation products that have been clearly demonstrated to be key players in AD cannot be ruled out. This review highlights the current understanding of the potential role of cholesterol and glucose dysmetabolism in AD progression, and the bidirectional crosstalk between these two phenomena.
Journal Article
Oxidized cholesterol as the driving force behind the development of Alzheimer’s disease
by
Gargiulo, Simona
,
Poli, Giuseppe
,
Testa, Gabriella
in
4-Hydroxynonenal
,
Alzheimer's disease
,
Amino acids
2015
Alzheimer's disease (AD), the most common neurodegenerative disorder associated with dementia, is typified by the pathological accumulation of amyloid Aβ peptides and neurofibrillary tangles (NFT) within the brain. Considerable evidence indicates that many events contribute to AD progression, including oxidative stress, inflammation, and altered cholesterol metabolism. The brain's high lipid content makes it particularly vulnerable to oxidative species, with the consequent enhancement of lipid peroxidation and cholesterol oxidation, and the subsequent formation of end products, mainly 4-hydroxynonenal and oxysterols, respectively from the two processes. The chronic inflammatory events observed in the AD brain include activation of microglia and astrocytes, together with enhancement of inflammatory molecule and free radical release. Along with glial cells, neurons themselves have been found to contribute to neuroinflammation in the AD brain, by serving as sources of inflammatory mediators. Oxidative stress is intimately associated with neuroinflammation, and a vicious circle has been found to connect oxidative stress and inflammation in AD. Alongside oxidative stress and inflammation, altered cholesterol metabolism and hypercholesterolemia also significantly contribute to neuronal damage and to progression of AD. Increasing evidence is now consolidating the hypothesis that oxidized cholesterol is the driving force behind the development of AD, and that oxysterols are the link connecting the disease to altered cholesterol metabolism in the brain and hypercholesterolemia; this is because of the ability of oxysterols, unlike cholesterol, to cross the blood brain barrier (BBB). The key role of oxysterols in AD pathogenesis has been strongly supported by research pointing to their involvement in modulating neuroinflammation, Aβ accumulation, and cell death. This review highlights the key role played by cholesterol and oxysterols in the brain in AD pathogenesis.
Journal Article
Inhibition of pathogenic non-enveloped viruses by 25-hydroxycholesterol and 27-hydroxycholesterol
2014
Recent studies reported a broad but selective antiviral activity of 25-hydroxycholesterol (25HC) against enveloped viruses, being apparently inactive against non-enveloped viruses. Here we show that 25HC is endowed with a marked antiviral activity against three pathogenic non-enveloped viruses, i.e. human papillomavirus-16 (HPV-16), human rotavirus (HRoV) and human rhinovirus (HRhV), thus significantly expanding its broad antiviral spectrum, so far recognized to be limited to viruses with envelope. Moreover, here we disclose the remarkable antiviral activity of another oxysterol of physiological origin, i.e. 27-hydroxycholesterol (27HC), against HPV-16, HRoV and HRhV. We have also identified a much weaker antiviral activity of other oxysterols of pathophysiological relevance, i.e 7α-hydroxycholesterol, 7β-hydroxycholesterol and 7-ketocholesterol. These findings suggest that appropriate modulation of endogenous production of oxysterols might be a primary host strategy to counteract a broad panel of viral infections. Moreover, 25HC and 27HC could be considered for new therapeutic strategies against HPV-16, HRoV and HRhV.
Journal Article
The Controversial Role of 24-S-Hydroxycholesterol in Alzheimer’s Disease
by
Biasi, Fiorella
,
Giannelli, Serena
,
Testa, Gabriella
in
24-S-hydroxycholesterol
,
Alzheimer's disease
,
amyloid
2021
The development of Alzheimer’s disease (AD) is influenced by several events, among which the dysregulation of cholesterol metabolism in the brain plays a major role. Maintenance of brain cholesterol homeostasis is essential for neuronal functioning and brain development. To maintain the steady-state level, excess brain cholesterol is converted into the more hydrophilic metabolite 24-S-hydroxycholesterol (24-OHC), also called cerebrosterol, by the neuron-specific enzyme CYP46A1. A growing bulk of evidence suggests that cholesterol oxidation products, named oxysterols, are the link connecting altered cholesterol metabolism to AD. It has been shown that the levels of some oxysterols, including 27-hydroxycholesterol, 7β-hydroxycholesterol and 7-ketocholesterol, significantly increase in AD brains contributing to disease progression. In contrast, 24-OHC levels decrease, likely due to neuronal loss. Among the different brain oxysterols, 24-OHC is certainly the one whose role is most controversial. It is the dominant oxysterol in the brain and evidence shows that it represents a signaling molecule of great importance for brain function. However, numerous studies highlighted the potential role of 24-OHC in favoring AD development, since it promotes neuroinflammation, amyloid β (Aβ) peptide production, oxidative stress and cell death. In parallel, 24-OHC has been shown to exert several beneficial effects against AD progression, such as preventing tau hyperphosphorylation and Aβ production. In this review we focus on the current knowledge of the controversial role of 24-OHC in AD pathogenesis, reporting a detailed overview of the findings about its levels in different AD biological samples and its noxious or neuroprotective effects in the brain. Given the relevant role of 24-OHC in AD pathophysiology, its targeting could be useful for disease prevention or slowing down its progression.
Journal Article
Loading into Nanoparticles Improves Quercetin's Efficacy in Preventing Neuroinflammation Induced by Oxysterols
by
Biasi, Fiorella
,
Testa, Gabriella
,
Badilli, Ulya
in
Alzheimer's disease
,
Antioxidants - chemistry
,
Antioxidants - pharmacology
2014
Chronic inflammatory events appear to play a fundamental role in Alzheimer's disease (AD)-related neuropathological changes, and to result in neuronal dysfunction and death. The inflammatory responses observed in the AD brain include activation and proliferation of glial cells, together with up-regulation of inflammatory mediators and of free radicals. Along with glial cells, neurons themselves can also react and contribute to neuroinflammatory changes in the AD brain, by serving as sources of inflammatory mediators. Because excess cholesterol cannot be degraded in the brain, it must be excreted from that organ as cholesterol oxidation products (oxysterols), in order to prevent its accumulation. Among risk factors for this neurodegenerative disease, a mechanistic link between altered cholesterol metabolism and AD has been suggested; oxysterols appear to be the missing linkers between the two, because of their neurotoxic effects. This study shows that 24-hydroxycholesterol, 27-hydroxycholesterol, and 7β-hydroxycholesterol, the three oxysterols potentially implicated in AD pathogenesis, induce some pro-inflammatory mediator expression in human neuroblastoma SH-SY5Y cells, via Toll-like receptor-4/cyclooxygenase-2/membrane bound prostaglandin E synthase (TLR4/COX-2/mPGES-1); this clearly indicates that oxysterols may promote neuroinflammatory changes in AD. To confirm this evidence, cells were incubated with the anti-inflammatory flavonoid quercetin; remarkably, its anti-inflammatory effects in SH-SY5Y cells were enhanced when it was loaded into β-cyclodextrin-dodecylcarbonate nanoparticles, versus cells pretreated with free quercetin. The goal of loading quercetin into nanoparticles was to improve its permeation across the blood-brain barrier into the brain, and its bioavailability to reach target cells. The findings show that this drug delivery system might be a new therapeutic strategy for preventing or reducing AD progression.
Journal Article
Cholesterol Dysmetabolism in Alzheimer’s Disease: A Starring Role for Astrocytes?
by
Giannelli, Serena
,
Testa, Gabriella
,
Gamba, Paola
in
Alzheimer's disease
,
Amyloid
,
astrocyte reactivity
2021
In recent decades, the impairment of cholesterol metabolism in the pathogenesis of Alzheimer’s disease (AD) has been intensively investigated, and it has been recognized to affect amyloid β (Aβ) production and clearance, tau phosphorylation, neuroinflammation and degeneration. In particular, the key role of cholesterol oxidation products, named oxysterols, has emerged. Brain cholesterol metabolism is independent from that of peripheral tissues and it must be preserved in order to guarantee cerebral functions. Among the cells that help maintain brain cholesterol homeostasis, astrocytes play a starring role since they deliver de novo synthesized cholesterol to neurons. In addition, other physiological roles of astrocytes are to modulate synaptic transmission and plasticity and support neurons providing energy. In the AD brain, astrocytes undergo significant morphological and functional changes that contribute to AD onset and development. However, the extent of this contribution and the role played by oxysterols are still unclear. Here we review the current understanding of the physiological role exerted by astrocytes in the brain and their contribution to AD pathogenesis. In particular, we focus on the impact of cholesterol dysmetabolism on astrocyte functions suggesting new potential approaches to develop therapeutic strategies aimed at counteracting AD development.
Journal Article
ApoE3 vs. ApoE4 Astrocytes: A Detailed Analysis Provides New Insights into Differences in Cholesterol Homeostasis
by
Testa, Gabriella
,
Giannelli, Serena
,
Leoni, Valerio
in
ABCA1 protein
,
Alzheimer's disease
,
ApoE4
2022
The strongest genetic risk factor for sporadic Alzheimer’s disease (AD) is the presence of the ε4 allele of the apolipoprotein E (ApoE) gene, the major apolipoprotein involved in brain cholesterol homeostasis. Being astrocytes the main producers of cholesterol and ApoE in the brain, we investigated the impact of the ApoE genotype on astrocyte cholesterol homeostasis. Two mouse astrocytic cell lines expressing the human ApoE3 or ApoE4 isoform were employed. Gas chromatography–mass spectrometry (GC-MS) analysis pointed out that the levels of total cholesterol, cholesterol precursors, and various oxysterols are altered in ApoE4 astrocytes. Moreover, the gene expression analysis of more than 40 lipid-related genes by qRT-PCR showed that certain genes are up-regulated (e.g., CYP27A1) and others down-regulated (e.g., PPARγ, LXRα) in ApoE4, compared to ApoE3 astrocytes. Beyond confirming the significant reduction in the levels of PPARγ, a key transcription factor involved in the maintenance of lipid homeostasis, Western blotting showed that both intracellular and secreted ApoE levels are altered in ApoE4 astrocytes, as well as the levels of receptors and transporters involved in lipid uptake/efflux (ABCA1, LDLR, LRP1, and ApoER2). Data showed that the ApoE genotype clearly affects astrocytic cholesterol homeostasis; however, further investigation is needed to clarify the mechanisms underlying these differences and the consequences on neighboring cells. Indeed, drug development aimed at restoring cholesterol homeostasis could be a potential strategy to counteract AD.
Journal Article
24-Hydroxycholesterol Induces Tau Proteasome-Dependent Degradation via the SIRT1/PGC1α/Nrf2 Pathway: A Potential Mechanism to Counteract Alzheimer’s Disease
by
Testa, Gabriella
,
Giannelli, Serena
,
Gamba, Paola
in
24-hydroxycholesterol
,
Alzheimer's disease
,
Antioxidants
2023
Considerable evidence indicates that cholesterol oxidation products, named oxysterols, play a key role in several events involved in Alzheimer’s disease (AD) pathogenesis. Although the majority of oxysterols causes neuron dysfunction and degeneration, 24-hydroxycholesterol (24-OHC) has recently been thought to be neuroprotective also. The present study aimed at supporting this concept by exploring, in SK-N-BE neuroblastoma cells, whether 24-OHC affected the neuroprotective SIRT1/PGC1α/Nrf2 axis. We demonstrated that 24-OHC, through the up-regulation of the deacetylase SIRT1, was able to increase both PGC1α and Nrf2 expression and protein levels, as well as Nrf2 nuclear translocation. By acting on this neuroprotective pathway, 24-OHC favors tau protein clearance by triggering tau ubiquitination and subsequently its degradation through the ubiquitin–proteasome system. We also observed a modulation of SIRT1, PGC1α, and Nrf2 expression and synthesis in the brain of AD patients with the progression of the disease, suggesting their potential role in neuroprotection. These findings suggest that 24-OHC contributes to tau degradation through the up-regulation of the SIRT1/PGC1α/Nrf2 axis. Overall, the evidence points out the importance of avoiding 24-OHC loss, which can occur in the AD brain, and of limiting SIRT1, PGC1α, and Nrf2 deregulation in order to prevent the neurotoxic accumulation of hyperphosphorylated tau and counteract neurodegeneration.
Journal Article
Altered Brain Cholesterol Machinery in a Down Syndrome Mouse Model: A Possible Common Feature with Alzheimer’s Disease
by
Testa, Gabriella
,
Giannelli, Serena
,
Leoni, Valerio
in
Advertising executives
,
Alzheimer's disease
,
autoxidation
2024
Down syndrome (DS) is a complex chromosomal disorder considered as a genetically determined form of Alzheimer’s disease (AD). Maintenance of brain cholesterol homeostasis is essential for brain functioning and development, and its dysregulation is associated with AD neuroinflammation and oxidative damage. Brain cholesterol imbalances also likely occur in DS, concurring with the precocious AD-like neurodegeneration. In this pilot study, we analyzed, in the brain of the Ts2Cje (Ts2) mouse model of DS, the expression of genes encoding key enzymes involved in cholesterol metabolism and of the levels of cholesterol and its main precursors and products of its metabolism (i.e., oxysterols). The results showed, in Ts2 mice compared to euploid mice, the downregulation of the transcription of the genes encoding the enzymes 3-hydroxy-3-methylglutaryl-CoA reductase and 24-dehydrocholesterol reductase, the latter originally recognized as an indicator of AD, and the consequent reduction in total cholesterol levels. Moreover, the expression of genes encoding enzymes responsible for brain cholesterol oxidation and the amounts of the resulting oxysterols were modified in Ts2 mouse brains, and the levels of cholesterol autoxidation products were increased, suggesting an exacerbation of cerebral oxidative stress. We also observed an enhanced inflammatory response in Ts2 mice, underlined by the upregulation of the transcription of the genes encoding for α-interferon and interleukin-6, two cytokines whose synthesis is increased in the brains of AD patients. Overall, these results suggest that DS and AD brains share cholesterol cycle derangements and altered oxysterol levels, which may contribute to the oxidative and inflammatory events involved in both diseases.
Journal Article
Progressive Increase of Matrix Metalloprotease-9 and Interleukin-8 Serum Levels during Carcinogenic Process in Human Colorectal Tract
by
Biasi, Fiorella
,
Saracco, Giorgio Maria
,
Papotti, Mauro
in
Adenocarcinoma
,
Adenocarcinoma - blood
,
Adenocarcinoma - enzymology
2012
Inflammatory reactions, known to promote tumor growth and invasion, have been found associated with colorectal carcinoma (CRC). Macrophages are the chief component of the inflammatory infiltration that occurs early in the progression from non-invasive to malignant tumor, with a switch from the pro-inflammatory phenotype to the tumor-promoting phenotype. Tumor and stroma are additional sources of inflammation-related molecules. The study aimed to evaluate, during colorectal carcinogenesis from benign to malignant phases: i) the trend of serum levels of IL-8, IL-6, TGFβ1, VEGF and MMPs; ii) the parallel trend of CRP serum levels; iii) derangement of the principal TGFβ1 receptors (TGFβ1RI/RII) in tumor tissues.
96 patients with colon adenomas or CRC at different stages of progression, and 17 controls, were recruited. Serum IL-8, IL-6, TGFβ1, VEGF, MMPs and CRP levels were analyzed before endoscopy or surgery. TGFβ1 receptors were evaluated in adenoma biopsies and surgically-removed colorectal adenocarcinomas. Serum levels of IL-8 in adenocarcinoma patients were increased from stage II, when also the enzymatic activity of MMP-9 increased. Of note, the increasing trend of the two serum markers was found significantly correlated. Trend of serum CRP was also very similar to that of IL-8 and MMP-9, but just below statistical significance. TGFβ1 levels were lower at stage III CRC, while IL-6 and VEGF levels had no significant variations. In tissue specimens, TGFβ1 receptors were already absent in about 50% of adenomas, and this percentage of missing receptors markedly increased in CRC stages III and IV.
Combined quantification of serum IL-8, MMP-9 and CRP, appears a reliable and advanced index of inflammation-related processes during malignant phase of colorectal carcinogenesis, since these molecules remain within normal range in colorectal adenoma bearing patients, while consistently increase in the blood of CRC patients, even if from stage II only.
Journal Article