Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
22 result(s) for "Leong, Chung-Yan"
Sort by:
Antibacterial Spirotetronate Polyketides from an Actinomadura sp. Strain A30804
Large scale cultivation and chemical investigation of an extract obtained from Actimonadura sp. resulted in the identification of six previously undescribed spirotetronates (pyrrolosporin B and decatromicins C–G; 7–12), along with six known congeners, namely decatromicins A–B (1–2), BE-45722B–D (3–5), and pyrrolosporin A (6). The chemical structures of compounds 1–12 were characterized via comparison with previously reported data and analysis of 1D/2D NMR and MS data. The structures of all new compounds were highly related to the spirotetronate type compounds, decatromicin and pyrrolosporin, with variations in the substituents on the pyrrole and aglycone moieties. All compounds were evaluated for antibacterial activity against the Gram-negative bacteria, Acinetobacter baumannii and Gram-positive bacteria, Staphylococcus aureus and were investigated for their cytotoxicity against the human cancer cell line A549. Of these, decatromicin B (2), BE-45722B (3), and pyrrolosporin B (7) exhibited potent antibacterial activities against both Gram-positive (MIC90 between 1–3 μM) and Gram-negative bacteria (MIC90 values ranging from 12–36 μM) with weak or no cytotoxic activity against A549 cells.
Natural Products from Singapore Soil-Derived Streptomycetaceae Family and Evaluation of Their Biological Activities
Natural products have long been used as a source of antimicrobial agents against various microorganisms. Actinobacteria are a group of bacteria best known to produce a wide variety of bioactive secondary metabolites, including many antimicrobial agents. In this study, four actinobacterial strains found in Singapore terrestrial soil were investigated as potential sources of new antimicrobial compounds. Large-scale cultivation, chemical, and biological investigation led to the isolation of a previously undescribed tetronomycin A (1) that demonstrated inhibitory activities against both Gram-positive bacteria Staphylococcus aureus (SA) and methicillin-resistant Staphylococcus aureus (MRSA) (i.e., MIC90 of 2–4 μM and MBC90 of 9–12 μM), and several known antimicrobial compounds, namely nonactin, monactin, dinactin, 4E-deacetylchromomycin A3, chromomycin A2, soyasaponin II, lysolipin I, tetronomycin, and naphthomevalin. Tetronomycin showed a two- to six-fold increase in antibacterial activity (i.e., MIC90 and MBC90 of 1–2 μM) as compared to tetronomycin A (1), indicating the presence of an oxy-methyl group at the C-27 position is important for antibacterial activity.
Antibacterial Thiopeptide GE2270-Congeners from Nonomuraea jiangxiensis
Thiopeptides are macrocyclic natural products with potent bioactivity. Nine new natural thiopeptides (1–9) were obtained from a Nonomuraea jiangxiensis isolated from a terrestrial soil sample collected in Singapore. Even though some of these compounds were previously synthesized or isolated from engineered strains, herein we report the unprecedented isolation of these thiopeptides from a native Nonomuraea jiangxiensis. A comparison with the literature and a detailed analysis of the NMR and HRMS of compounds 1–9 was conducted to assign their chemical structures. The structures of all new compounds were highly related to the thiopeptide antibiotics GE2270, with variations in the substituents on the thiazole and amino acid moieties. Thiopeptides 1–9 exhibited a potent antimicrobial activity against the Gram-positive bacteria, Staphylococcus aureus with MIC90 values ranging from 2 µM to 11 µM. In addition, all compounds were investigated for their cytotoxicity against the human cancer cell line A549, none of the compounds were cytotoxic.
Hypoculoside, a sphingoid base-like compound from Acremonium disrupts the membrane integrity of yeast cells
We have isolated Hypoculoside, a new glycosidic amino alcohol lipid from the fungus Acremonium sp. F2434 belonging to the order Hypocreales and determined its structure by 2D-NMR (Nuclear Magnetic Resonance) spectroscopy. Hypoculoside has antifungal, antibacterial and cytotoxic activities. Homozygous profiling (HOP) of hypoculoside in Saccharomyces cerevisiae (budding yeast) revealed that several mutants defective in vesicular trafficking and vacuolar protein transport are sensitive to hypoculoside. Staining of budding yeast cells with the styryl dye FM4-64 indicated that hypoculoside damaged the vacuolar structure. Furthermore, the propidium iodide (PI) uptake assay showed that hypoculoside disrupted the plasma membrane integrity of budding yeast cells. Interestingly, the glycosidic moiety of hypoculoside is required for its deleterious effect on growth, vacuoles and plasma membrane of budding yeast cells.
Isolation and synthesis of falcitidin, a novel myxobacterial-derived acyltetrapeptide with activity against the malaria target falcipain-2
A 384-well microtitre plate fluorescence cleavage assay was developed to identify inhibitors of the cysteine protease falcipain-2, an important antimalarial drug target. Bioassay-guided isolation of a MeOH extract from a myxobacterium Chitinophaga sp. Y23 isolated from soil collected in Singapore, led to the identification of a new acyltetrapeptide, falcitidin ( 1 ), which displayed an IC 50 value of 6 μ M against falcipain-2. The planar structure of 1 was secured by NMR and MS/MS analysis. Attempts to isolate further material for biological testing were hampered by inconsistent production and by a low yield (<100 μg l −1 ). The absolute configuration of 1 was determined by Marfey’s analysis and the structure was confirmed through total synthesis as isovaleric acid- D -His- L -Ile- L -Val- L -Pro-NH 2 . Falcitidin ( 1 ) is the first member of a new class of falcipain-2 inhibitors and, unlike other peptide-based inhibitors, does not contain reactive groups that irreversibly bind to active cysteine sites.
Enhancing armeniaspirols production through multi-level engineering of a native Streptomyces producer
Background Nature has provided unique molecular scaffolds for applications including therapeutics, agriculture, and food. Due to differences in ecological environments and laboratory conditions, engineering is often necessary to uncover and utilize the chemical diversity. Although we can efficiently activate and mine these often complex 3D molecules, sufficient production of target molecules for further engineering and application remain a considerable bottleneck. An example of these bioactive scaffolds is armeniaspirols, which are potent polyketide antibiotics against gram-positive pathogens and multi-resistance gram-negative Helicobacter pylori . Here, we examine the upregulation of armeniaspirols in an alternative Streptomyces producer, Streptomyces sp. A793. Results Through an incidental observation of enhanced yields with the removal of a competing polyketide cluster, we observed seven-fold improvement in armeniaspirol production. To further investigate the improvement of armeniaspirol production, we examine upregulation of armeniaspirols through engineering of biosynthetic pathways and primary metabolism; including perturbation of genes in biosynthetic gene clusters and regulation of triacylglycerols pool. Conclusion With either overexpression of extender unit pathway or late-stage N -methylation, or the deletion of a competing polyketide cluster, we can achieve seven-fold to forty nine-fold upregulation of armeniaspirol production. The most significant upregulation was achieved by expression of heterologous fatty acyl-CoA synthase, where we observed not only a ninety seven-fold increase in production yields compared to wild type, but also an increase in the diversity of observed armeniaspirol intermediates and analogs.
Application of Cas12j for Streptomyces Editing
In recent years, CRISPR-Cas toolboxes for Streptomyces editing have rapidly accelerated natural product discovery and engineering. However, Cas efficiencies are oftentimes strain-dependent, and the commonly used Streptococcus pyogenes Cas9 (SpCas9) is notorious for having high levels of off-target toxicity effects. Thus, a variety of Cas proteins is required for greater flexibility of genetic manipulation within a wider range of Streptomyces strains. This study explored the first use of Acidaminococcus sp. Cas12j, a hypercompact Cas12 subfamily, for genome editing in Streptomyces and its potential in activating silent biosynthetic gene clusters (BGCs) to enhance natural product synthesis. While the editing efficiencies of Cas12j were not as high as previously reported efficiencies of Cas12a and Cas9, Cas12j exhibited higher transformation efficiencies compared to SpCas9. Furthermore, Cas12j demonstrated significantly improved editing efficiencies compared to Cas12a in activating BGCs in Streptomyces sp. A34053, a strain wherein both SpCas9 and Cas12a faced limitations in accessing the genome. Overall, this study expanded the repertoire of Cas proteins for genome editing in actinomycetes and highlighted not only the potential of recently characterized Cas12j in Streptomyces but also the importance of having an extensive genetic toolbox for improving the editing success of these beneficial microbes.
Genomics-driven discovery of a biosynthetic gene cluster required for the synthesis of BII-Rafflesfungin from the fungus Phoma sp. F3723
Background Phomafungin is a recently reported broad spectrum antifungal compound but its biosynthetic pathway is unknown. We combed publicly available Phoma genomes but failed to find any putative biosynthetic gene cluster that could account for its biosynthesis. Results Therefore, we sequenced the genome of one of our Phoma strains (F3723) previously identified as having antifungal activity in a high-throughput screen. We found a biosynthetic gene cluster that was predicted to synthesize a cyclic lipodepsipeptide that differs in the amino acid composition compared to Phomafungin. Antifungal activity guided isolation yielded a new compound, BII-Rafflesfungin, the structure of which was determined. Conclusions We describe the NRPS-t1PKS cluster ‘ BIIRfg’ compatible with the synthesis of the cyclic lipodepsipeptide BII-Rafflesfungin [HMHDA-L-Ala-L-Glu-L-Asn-L-Ser-L-Ser-D-Ser-D-allo-Thr-Gly]. We report new Stachelhaus codes for Ala, Glu, Asn, Ser, Thr, and Gly. We propose a mechanism for BII-Rafflesfungin biosynthesis, which involves the formation of the lipid part by BIIRfg_PKS followed by activation and transfer of the lipid chain by a predicted AMP-ligase on to the first PCP domain of the BIIRfg_NRPS gene.
Tandem mass spectral metabolic profiling of 54 actinobacterial strains and their 459 mutants
Natural products encompass a diverse range of compounds with high impact applications in consumer care, agriculture and most notably, therapeutics. However, despite the expansive chemical repertoire indicated in genomic information of microbes, only a small subset can be obtained under laboratory conditions. To increase accessible chemical space and realize Nature’s full chemical potential, a multi-pronged genetic- and cultivation-based strategy has been employed to activate and upregulate natural product biosyntheses in native and heterologous strains. This data descriptor documents a characterized collection of 2,138 liquid chromatography-tandem mass spectrometry (LC/MS-MS) spectra of fermentation extracts from 54 native actinobacterial strains collected from soil and marine environments in Singapore, and their 459 activated mutants in 3 to 5 media. A total of 743 unique metabolites have been identified, with the activated mutants demonstrating an approximately 2-fold expansion in accessible chemical space over wild type strains. Interrogating this expanded chemical diversity with cheminformatic tools can provide direction for the discovery of novel natural products with desirable functional activity.
Exploring a general multi-pronged activation strategy for natural product discovery in Actinomycetes
Natural products possess significant therapeutic potential but remain underutilized despite advances in genomics and bioinformatics. While there are approaches to activate and upregulate natural product biosynthesis in both native and heterologous microbial strains, a comprehensive strategy to elicit production of natural products as well as a generalizable and efficient method to interrogate diverse native strains collection, remains lacking. Here, we explore a flexible and robust integrase-mediated multi-pronged activation approach to reliably perturb and globally trigger antibiotics production in actinobacteria. Across 54 actinobacterial strains, our approach yielded 124 distinct activator-strain combinations which consistently outperform wild type. Our approach expands accessible metabolite space by nearly two-fold and increases selected metabolite yields by up to >200-fold, enabling discovery of Gram-negative bioactivity in tetramic acid analogs. We envision these findings as a gateway towards a more streamlined, accelerated, and scalable strategy to unlock the full potential of Nature’s chemical repertoire. A multi-pronged activation approach applied to 54 actinobacterial strains doubles accessible metabolite space and enables discovery of gram-negative bioactivity, offering insights to harness nature’s chemical potential. The approach enhances or triggers natural product production across all 54 native actinobacterial strains, doubling total metabolite production and enabling the discovery of a new tetramic acid analog with gram-negative bioactivity. Insights from this large-scale study could lead to a more streamlined approach to unlock the full potential of nature’s chemical resources.