Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
67 result(s) for "Lepage, Patricia"
Sort by:
Enterocolitis due to immune checkpoint inhibitors: a systematic review
Immune checkpoint inhibitors targeting cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) and programmed death-1 (PD-1)/ligand are increasingly used to treat several types of cancer. These drugs enhance antitumour T-cell activity and therefore induce immune-related adverse effects (irAE), of which gastrointestinal (GI) irAE are among the most frequent and severe. This systematic literature review summarises the clinical manifestations, management and pathophysiology of GI irAE due to immune checkpoint inhibitors. GI irAE induced by anti-CTLA-4 are frequent, potentially severe and resemble IBD, whereas those induced by PD-1 blockade seem to be less frequent and clinically more diverse. Baseline symbiotic gut microbiota is associated with an enhanced antitumour response to immune checkpoint inhibitors and an increased susceptibility to developing enterocolitis, in patients treated with anti-CTLA-4. These findings open new perspectives for possible manipulation of the gut microbiota in order to better identify responders to immune checkpoint inhibitors and to increase their efficacy and safety.
Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer
Gut microbiota composition influences the clinical benefit of immune checkpoints in patients with advanced cancer but mechanisms underlying this relationship remain unclear. Molecular mechanism whereby gut microbiota influences immune responses is mainly assigned to gut microbial metabolites. Short-chain fatty acids (SCFA) are produced in large amounts in the colon through bacterial fermentation of dietary fiber. We evaluate in mice and in patients treated with anti-CTLA-4 blocking mAbs whether SCFA levels is related to clinical outcome. High blood butyrate and propionate levels are associated with resistance to CTLA-4 blockade and higher proportion of Treg cells. In mice, butyrate restrains anti-CTLA-4-induced up-regulation of CD80/CD86 on dendritic cells and ICOS on T cells, accumulation of tumor-specific T cells and memory T cells. In patients, high blood butyrate levels moderate ipilimumab-induced accumulation of memory and ICOS + CD4 + T cells and IL-2 impregnation. Altogether, these results suggest that SCFA limits anti-CTLA-4 activity. The gut microbiota has been reported to regulate the efficacy of cancer therapy. Here, the authors show that short-chain fatty acids, which are generated through bacterial fermentation, increases immune tolerance leading to resistance to anti-CTLA-4 immunotherapy in mice and patients with metastatic melanoma.
High-fat diet alters gut microbiota physiology in mice
The intestinal microbiota is known to regulate host energy homeostasis and can be influenced by high-calorie diets. However, changes affecting the ecosystem at the functional level are still not well characterized. We measured shifts in cecal bacterial communities in mice fed a carbohydrate or high-fat (HF) diet for 12 weeks at the level of the following: (i) diversity and taxa distribution by high-throughput 16S ribosomal RNA gene sequencing; (ii) bulk and single-cell chemical composition by Fourier-transform infrared- (FT-IR) and Raman micro-spectroscopy and (iii) metaproteome and metabolome via high-resolution mass spectrometry. High-fat diet caused shifts in the diversity of dominant gut bacteria and altered the proportion of Ruminococcaceae (decrease) and Rikenellaceae (increase). FT-IR spectroscopy revealed that the impact of the diet on cecal chemical fingerprints is greater than the impact of microbiota composition. Diet-driven changes in biochemical fingerprints of members of the Bacteroidales and Lachnospiraceae were also observed at the level of single cells, indicating that there were distinct differences in cellular composition of dominant phylotypes under different diets. Metaproteome and metabolome analyses based on the occurrence of 1760 bacterial proteins and 86 annotated metabolites revealed distinct HF diet-specific profiles. Alteration of hormonal and anti-microbial networks, bile acid and bilirubin metabolism and shifts towards amino acid and simple sugars metabolism were observed. We conclude that a HF diet markedly affects the gut bacterial ecosystem at the functional level.
Rapid analysis of bile acids in different biological matrices using LC-ESI-MS/MS for the investigation of bile acid transformation by mammalian gut bacteria
Bile acids are important signaling molecules that regulate cholesterol, glucose, and energy homoeostasis and have thus been implicated in the development of metabolic disorders. Their bioavailability is strongly modulated by the gut microbiota, which contributes to generation of complex individual-specific bile acid profiles. Hence, it is important to have accurate methods at hand for precise measurement of these important metabolites. Here, a rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous identification and quantitation of primary and secondary bile acids as well as their taurine and glycine conjugates was developed and validated. Applicability of the method was demonstrated for mammalian tissues, biofluids, and cell culture media. The analytical approach mainly consists of a simple and rapid liquid-liquid extraction procedure in presence of deuterium-labeled internal standards. Baseline separation of all isobaric bile acid species was achieved and a linear correlation over a broad concentration range was observed. The method showed acceptable accuracy and precision on intra-day (1.42–11.07 %) and inter-day (2.11–12.71 %) analyses and achieved good recovery rates for representative analytes (83.7–107.1 %). As a proof of concept, the analytical method was applied to mouse tissues and biofluids, but especially to samples from in vitro fermentations with gut bacteria of the family Coriobacteriaceae . The developed method revealed that the species Eggerthella lenta and Collinsella aerofaciens possess bile salt hydrolase activity, and for the first time that the species Enterorhabdus mucosicola is able to deconjugate and dehydrogenate primary bile acids in vitro.
The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism
Background As the gut microbiota contributes to metabolic health, it is important to determine specific diet-microbiota interactions that influence host metabolism. Bile acids and dietary fat source can alter phenotypes of diet-induced obesity, but the interplay with intestinal microorganisms is unclear. Here, we investigated metabolic consequences of diets enriched in primary bile acids with or without addition of lard or palm oil, and studied gut microbiota structure and functions in mice. Results In combination with bile acids, dietary lard fed to male C57BL/6N mice for a period of 8 weeks enhanced fat mass accumulation in colonized, but not in germ-free mice when compared to palm oil. This was associated with impaired glucose tolerance, lower fasting insulin levels, lower counts of enteroendocrine cells, fatty liver, and elevated amounts of hepatic triglycerides, cholesteryl esters, and monounsaturated fatty acids. Lard- and bile acid-fed mice were characterized by shifts in dominant gut bacterial communities, including decreased relative abundances of Lachnospiraceae and increased occurrence of Desulfovibrionaceae and the species Clostridium lactatifermentans and Flintibacter butyricus . Metatranscriptomic analysis revealed shifts in microbial functions, including lipid and amino acid metabolism. Conclusions Caution is required when interpreting data from diet-induced obesity models due to varying effects of dietary fat source. Detrimental metabolic consequences of a diet enriched with lard and primary bile acids were dependent on microbial colonization of the host and were linked to hepatic lipid rearrangements and to alterations of dominant bacterial communities in the cecum.
Hemidesmosome integrity protects the colon against colitis and colorectal cancer
ObjectiveEpidemiological and clinical data indicate that patients suffering from IBD with long-standing colitis display a higher risk to develop colorectal high-grade dysplasia. Whereas carcinoma invasion and metastasis rely on basement membrane (BM) disruption, experimental evidence is lacking regarding the potential contribution of epithelial cell/BM anchorage on inflammation onset and subsequent neoplastic transformation of inflammatory lesions. Herein, we analyse the role of the α6β4 integrin receptor found in hemidesmosomes that attach intestinal epithelial cells (IECs) to the laminin-containing BM.DesignWe developed new mouse models inducing IEC-specific ablation of α6 integrin either during development (α6ΔIEC) or in adults (α6ΔIEC-TAM).ResultsStrikingly, all α6ΔIEC mutant mice spontaneously developed long-standing colitis, which degenerated overtime into infiltrating adenocarcinoma. The sequence of events leading to disease onset entails hemidesmosome disruption, BM detachment, IL-18 overproduction by IECs, hyperplasia and enhanced intestinal permeability. Likewise, IEC-specific ablation of α6 integrin induced in adult mice (α6ΔIEC-TAM) resulted in fully penetrant colitis and tumour progression. Whereas broad-spectrum antibiotic treatment lowered tissue pathology and IL-1β secretion from infiltrating myeloid cells, it failed to reduce Th1 and Th17 response. Interestingly, while the initial intestinal inflammation occurred independently of the adaptive immune system, tumourigenesis required B and T lymphocyte activation.ConclusionsWe provide for the first time evidence that loss of IECs/BM interactions triggered by hemidesmosome disruption initiates the development of inflammatory lesions that progress into high-grade dysplasia and carcinoma. Colorectal neoplasia in our mouse models resemble that seen in patients with IBD, making them highly attractive for discovering more efficient therapies.
A Guide for Ex Vivo Handling and Storage of Stool Samples Intended for Fecal Microbiota Transplantation
Owing to the growing recognition of the gut microbiota as a main partner of human health, we are expecting that the number of indications for fecal microbiota transplantation (FMT) will increase. Thus, there is an urgent need for standardization of the entire process of fecal transplant production. This study provides a complete standardized procedure to prepare and store live and ready-to-use transplants that meet the standard requirements of good practices to applied use in pharmaceutical industry. We show that, if time before transformation to transplants would exceed 24 hours, fresh samples should not be exposed to temperatures above 20 °C, and refrigeration at 4 °C can be a safe solution. Oxygen-free atmosphere was not necessary and simply removing air above collected samples was sufficient to preserve viability. Transplants prepared in maltodextrin-trehalose solutions, stored in a -80 °C standard freezer and then rapidly thawed at 37 °C, retained the best revivification potential as  proven by 16S rRNA profiles, metabolomic fingerprints, and flow cytometry assays over a 3-month observation period. Maltodextrin-trehalose containing cryoprotectants were also efficient in preserving viability of lyophilized transplants, either in their crude or purified form, an option that can be attractive for fecal transplant biobanking and oral formulation.
Specificities of the Fecal Microbiota in Inflammatory Bowel Disease
Abnormalities have been described in the fecal microbiota of patients with IBD, but it is not known whether they are specific for inflammatory bowel disease (IBD) or to some extent common to other forms of colitis. The aim of this study was to compare the bacterial composition of the dominant fecal microbiota in patients with Crohn's disease (CD), ulcerative colitis (UC), infectious colitis (IC), and in healthy subjects (HS).MethodsFluorescent in situ hybridization adapted to flow cytometry was used to analyze the bacterial composition of fecal samples from 13 patients with active CD, 13 patients with active UC, 5 patients with IC, and 13 HS. We used 6 group-specific probes targeting 16S rRNA and spanning the main phylogenetic groups of the fecal microbiota.ResultsA significantly higher proportion of the total fecal bacteria were recognized by the 6 probes in HS (86.6% ± 12.7) and in IC (84.0% ± 11.7) than in patients with IBD (70.9% ± 15 in CD and 60.1% ± 25.7 in UC). The Clostridium coccoides group was reduced in UC (20.0% ± 13.3 versus 42.0% ± 12.0 in HS; P < .001), whereas the C leptum group was reduced in CD (13.1% ± 11.9 versus 25.2% ± 14.2 in HS; P = .002). The Bacteroides group was more abundant in IC (36.4% ± 22.9) than in the other 3 groups (13.8% ± 11.8 in CD, 11.7% ± 11.7 in UC, 12.1% ± 7.0 in HS; P < .001 for all 3 comparisons).ConclusionsIn IBD the dominant fecal microbiota comprises unusual bacterial species. Moreover, CD and UC fecal microbiota harbor specific discrepancies and differ from that of IC and healthy subjects.
Parasites and diet as main drivers of the Malagasy gut microbiome richness and function
Interactions between the prokaryotic microbiome and eukaryotic parasites in the vertebrate gut may affect overall host health and disease. While intertropical areas exhibit a high rate of parasites carriers, such interactions are understudied in these populations. Our objectives were to (1) describe the gut microbiome of individuals living in Madagascar, (2) identify potential associations between bacterial taxa and parasites colonizing the digestive tract and (3) highlight main determinants of the gut microbiota composition in this developing country. Metadata (socioeconomic, diet, clinical) and fecal samples were collected from 219 volunteers from North-West Madagascar (Mahajanga). Fecal microbiome was assessed through 16S rRNA gene sequencing and metabolomics, and related to dietary habits and parasites carriage. We highlight important Malagasy gut microbiome peculiarities. Out of three detected enterotypes, only one is similar to that observed in Westernized countries ( Ruminococcus -driven). Functions associated with the two others ( Clostridium sensu stricto-driven and Escherichia/Shigella -driven) are mostly directed toward amino acids biosynthesis and degradation, respectively. Diet and protozoan carriage were the main drivers of microbiota composition. High protozoan carriage was associated with higher diversity, richness and microbial functionalities. The gut microbiome of Malagasy strongly differs from that of Westernized countries. Asymptomatic protozoan carriage and dietary habits are the external factors with the deepest impact on gut microbiome. Further studies are needed to understand whether gut microbial richness constitute a predilection niche for protozoans colonization, due to their gazing features, or whether the parasites themselves induce a higher bacterial richness.
High engraftment capacity of frozen ready-to-use human fecal microbiota transplants assessed in germ-free mice
The number of indications for fecal microbiota transplantation is expected to rise, thus increasing the needs for production of readily available frozen or freeze-dried transplants. Using shotgun metagenomics, we investigated the capacity of two novel human fecal microbiota transplants prepared in maltodextrin-trehalose solutions (abbreviated MD and TR for maltodextrin:trehalose, 3:1, w/w, and trehalose:maltodextrin 3:1, w/w, respectively), to colonize a germ-free born mouse model. Gavage with frozen-thawed MD or TR suspensions gave the taxonomic profiles of mouse feces that best resembled those obtained with the fresh inoculum (Spearman correlations based on relative abundances of metagenomic species around 0.80 and 0.75 for MD and TR respectively), while engraftment capacity of defrosted NaCl transplants most diverged (Spearman correlations around 0.63). Engraftment of members of the family Lachnospiraceae and Ruminoccocaceae was the most challenging in all groups of mice, being improved with MD and TR transplants compared to NaCl, but still lower than with the fresh preparation. Improvement of engraftment of this important group in maintaining health represents a challenge that could benefit from further research on fecal microbiota transplant manufacturing.