Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
690
result(s) for
"Lerner, Aaron"
Sort by:
Potential Effects of Horizontal Gene Exchange in the Human Gut
by
Lerner, Aaron
,
Matthias, Torsten
,
Aminov, Rustam
in
Adaptation
,
Antibiotics
,
Autoimmune diseases
2017
Many essential functions of the human body are dependent on the symbiotic microbiota, which is present at especially high numbers and diversity in the gut. This intricate host-microbe relationship is a result of the long-term coevolution between the two. While the inheritance of mutational changes in the host evolution is almost exclusively vertical, the main mechanism of bacterial evolution is horizontal gene exchange. The gut conditions, with stable temperature, continuous food supply, constant physicochemical conditions, extremely high concentration of microbial cells and phages, and plenty of opportunities for conjugation on the surfaces of food particles and host tissues, represent one of the most favorable ecological niches for horizontal gene exchange. Thus, the gut microbial system genetically is very dynamic and capable of rapid response, at the genetic level, to selection, for example, by antibiotics. There are many other factors to which the microbiota may dynamically respond including lifestyle, therapy, diet, refined food, food additives, consumption of pre- and probiotics, and many others. The impact of the changing selective pressures on gut microbiota, however, is poorly understood. Presumably, the gut microbiome responds to these changes by genetic restructuring of gut populations, driven mainly
horizontal gene exchange. Thus, our main goal is to reveal the role played by horizontal gene exchange in the changing landscape of the gastrointestinal microbiome and potential effect of these changes on human health in general and autoimmune diseases in particular.
Journal Article
Cross-reactivity and sequence similarity between microbial transglutaminase and human tissue antigens
2023
Microbial transglutaminase (mTG) is a bacterial survival factor, frequently used as a food additive to glue processed nutrients. As a result, new immunogenic epitopes are generated that might drive autoimmunity. Presently, its contribution to autoimmunity through epitope similarity and cross-reactivity was investigated. Emboss Matcher was used to perform sequence alignment between mTG and various antigens implicated in many autoimmune diseases. Monoclonal and polyclonal antibodies made specifically against mTG were applied to 77 different human tissue antigens using ELISA. Six antigens were detected to share significant homology with mTG immunogenic sequences, representing major targets of common autoimmune conditions. Polyclonal antibody to mTG reacted significantly with 17 out of 77 tissue antigens. This reaction was most pronounced with mitochondrial M2, ANA, and extractable nuclear antigens. The results indicate that sequence similarity and cross-reactivity between mTG and various tissue antigens are possible, supporting the relationship between mTG and the development of autoimmune disorders 150W.
Journal Article
Probiotics: If It Does Not Help It Does Not Do Any Harm. Really?
by
Lerner, Aaron
,
Matthias, Torsten
,
Shoenfeld, Yehuda
in
antibiotic-resistant genes
,
Antibiotics
,
autoimmune disease
2019
Probiotics per definition should have beneficial effects on human health, and their consumption has tremendously increased in the last decades. In parallel, the amount of published material and claims for their beneficial efficacy soared continuously. Recently, multiple systemic reviews, meta-analyses, and expert opinions expressed criticism on their claimed effects and safety. The present review describes the dark side of the probiotics, in terms of problematic research design, incomplete reporting, lack of transparency, and under-reported safety. Highlighted are the potential virulent factors and the mode of action in the intestinal lumen, risking the physiological microbiome equilibrium. Finally, regulatory topics are discussed to lighten the heterogeneous guidelines applied worldwide. The shift in the scientific world towards a better understanding of the human microbiome, before consumption of the probiotic cargo, is highly endorsed. It is hoped that better knowledge will extend the probiotic repertoire, re-confirm efficacy or safety, establish their efficacy and substantiate their beneficial effects.
Journal Article
Microbial Transglutaminase Is a Very Frequently Used Food Additive and Is a Potential Inducer of Autoimmune/Neurodegenerative Diseases
2021
Microbial transglutaminase (mTG) is a heavily used food additive and its industrial transamidated complexes usage is rising rapidly. It was classified as a processing aid and was granted the GRAS (generally recognized as safe) definition, thus escaping full and thorough toxic and safety evaluations. Despite the manufacturers claims, mTG or its cross-linked compounds are immunogenic, pathogenic, proinflammatory, allergenic and toxic, and pose a risk to public health. The enzyme is a member of the transglutaminase family and imitates the posttranslational modification of gluten, by the tissue transglutaminase, which is the autoantigen of celiac disease. The deamidated and transamidated gliadin peptides lose their tolerance and induce the gluten enteropathy. Microbial transglutaminase and its complexes increase intestinal permeability, suppresses enteric protective pathways, enhances microbial growth and gliadin peptide’s epithelial uptake and can transcytose intra-enterocytically to face the sub-epithelial immune cells. The present review updates on the potentially detrimental side effects of mTG, aiming to interest the scientific community, induce food regulatory authorities’ debates on its safety, and protect the public from the mTG unwanted effects.
Journal Article
“Let Food Be Thy Medicine”: Gluten and Potential Role in Neurodegeneration
2021
Wheat is a most favored staple food worldwide and its major protein is gluten. It is involved in several gluten dependent diseases and lately was suggested to play a role in non-celiac autoimmune diseases. Its involvement in neurodegenerative conditions was recently suggested but no cause-and-effect relationship were established. The present narrative review expands on various aspects of the gluten-gut-brain axes events, mechanisms and pathways that connect wheat and gluten consumption to neurodegenerative disease. Gluten induced dysbiosis, increased intestinal permeabillity, enteric and systemic side effects, cross-reactive antibodies, and the sequence of homologies between brain antigens and gluten are highlighted. This combination may suggest molecular mimicry, alluding to some autoimmune aspects between gluten and neurodegenerative disease. The proverb of Hippocrates coined in 400 BC, “let food be thy medicine,” is critically discussed in the frame of gluten and potential neurodegeneration evolvement.
Journal Article
The Yin and Yang of dietary gluten transgressions in real-life scenarios of celiac patients
2020
According to the Chinese philosophy, Yin and Yang forces are contradictory, yet complementary, energetic qualities that shape our lives. Positive and negative, dark and bright eternally intermingle on a separate and intertwined spectrum. Food choices, nutrients, or dietary restrictions are not an exception. In this regard, patients with celiac disease (CD) on a gluten-free diet (GFD) live between Yin and Yang, represented by the real-life scenario of bounding back and forth between restricted compliance and temptations to occasional or permanent gluten ingestion. Luca et al. should be congratulated for their real-life scenario study, reporting occasional or voluntary transgression from a GFD in adults with CD [1]. The authors concluded that, despite long-term gluten consumption, no symptomatology nor enteric damage was apparent, suggesting the possibility of acquired gluten intolerance. They substantiated their findings by applying clinical examination, CD-associated serology, duodenal histology, capsule endoscopy, and a validated food-frequency questionnaire. Despite the study’s valuable contribution to the field, numerous controversies and ambiguities still remain concerning CD diagnosis and GFD withdrawal. From the CD perspective, diagnosis is based on a combination of clinical symptoms, serology, genotyping, and intestinal histology [2]. Presenting symptoms are manifold. The epidemiology is changing toward asymptomatology and hypo-symptomology, and many of the patients present with extra-intestinal manifestations [3]. Shortcomings are associated with using serology for CD diagnosis. Patients should be on a gluten-containing diet and IgA deficiency should be excluded. Antibody sensitivity is lower in a milder intestinal pathology, and even the most frequently used antibody, IgA anti-tissue transglutaminase, can present with multiple false positives and negatives [2, 4]. HLA-DQ2/8 negativity is used to rule out a diagnosis of CD but positivity is only confirmative and cannot be used as a first-line test [2]. In the past, histology was conclusive and necessary for a definitive diagnosis. However, in recent years, ambiguity has arisen due to significant inter-observer disagreement, the patchy histological presentation, shared features with multiple gastrointestinal conditions, and inaccuracy in milder damage [2, 5]. Due to the complexity of the disease and the controversies surrounding its classification and diagnosis, it is apparent that not a single test will make an accurate diagnosis. Therefore, a combined holistic approach to improve and standardize the CD diagnoses is urgently required [2]. Intriguingly, CD nutritional therapy is in no way less ambiguous. Below we discuss some controversies associated with gluten withdrawal.
Journal Article
The Potential Harmful Effects of Genetically Engineered Microorganisms (GEMs) on the Intestinal Microbiome and Public Health
2024
Gut luminal dysbiosis and pathobiosis result in compositional and biodiversified alterations in the microbial and host co-metabolites. The primary mechanism of bacterial evolution is horizontal gene transfer (HGT), and the acquisition of new traits can be achieved through the exchange of mobile genetic elements (MGEs). Introducing genetically engineered microbes (GEMs) might break the harmonized balance in the intestinal compartment. The present objectives are: 1. To reveal the role played by the GEMs’ horizontal gene transfers in changing the landscape of the enteric microbiome eubiosis 2. To expand on the potential detrimental effects of those changes on the human genome and health. A search of articles published in PubMed/MEDLINE, EMBASE, and Scielo from 2000 to August 2023 using appropriate MeSH entry terms was performed. The GEMs’ horizontal gene exchanges might induce multiple human diseases. The new GEMs can change the long-term natural evolution of the enteric pro- or eukaryotic cell inhabitants. The worldwide regulatory authority’s safety control of GEMs is not enough to protect public health. Viability, biocontainment, and many other aspects are only partially controlled and harmful consequences for public health should be avoided. It is important to remember that prevention is the most cost-effective strategy and primum non nocere should be the focus.
Journal Article
Natural Killer Cells and Cytotoxic T Cells: Complementary Partners against Microorganisms and Cancer
2024
Natural killer (NK) cells and cytotoxic T (CD8+) cells are two of the most important types of immune cells in our body, protecting it from deadly invaders. While the NK cell is part of the innate immune system, the CD8+ cell is one of the major components of adaptive immunity. Still, these two very different types of cells share the most important function of destroying pathogen-infected and tumorous cells by releasing cytotoxic granules that promote proteolytic cleavage of harmful cells, leading to apoptosis. In this review, we look not only at NK and CD8+ T cells but also pay particular attention to their different subpopulations, the immune defenders that include the CD56+CD16dim, CD56dimCD16+, CD57+, and CD57+CD16+ NK cells, the NKT, CD57+CD8+, and KIR+CD8+ T cells, and ILCs. We examine all these cells in relation to their role in the protection of the body against different microorganisms and cancer, with an emphasis on their mechanisms and their clinical importance. Overall, close collaboration between NK cells and CD8+ T cells may play an important role in immune function and disease pathogenesis. The knowledge of how these immune cells interact in defending the body against pathogens and cancers may help us find ways to optimize their defensive and healing capabilities with methods that can be clinically applied.
Journal Article
The Gut Microbiome Feelings of the Brain: A Perspective for Non-Microbiologists
2017
Objectives: To comprehensively review the scientific knowledge on the gut–brain axis. Methods: Various publications on the gut–brain axis, until 31 July 2017, were screened using the Medline, Google, and Cochrane Library databases. The search was performed using the following keywords: “gut-brain axis”, “gut-microbiota-brain axis”, “nutrition microbiome/microbiota”, “enteric nervous system”, “enteric glial cells/network”, “gut-brain pathways”, “microbiome immune system”, “microbiome neuroendocrine system” and “intestinal/gut/enteric neuropeptides”. Relevant articles were selected and reviewed. Results: Tremendous progress has been made in exploring the interactions between nutrients, the microbiome, and the intestinal, epithelium–enteric nervous, endocrine and immune systems and the brain. The basis of the gut–brain axis comprises of an array of multichannel sensing and trafficking pathways that are suggested to convey the enteric signals to the brain. These are mediated by neuroanatomy (represented by the vagal and spinal afferent neurons), the neuroendocrine–hypothalamic–pituitary–adrenal (HPA) axis (represented by the gut hormones), immune routes (represented by multiple cytokines), microbially-derived neurotransmitters, and finally the gate keepers of the intestinal and brain barriers. Their mutual and harmonious but intricate interaction is essential for human life and brain performance. However, a failure in the interaction leads to a number of inflammatory-, autoimmune-, neurodegenerative-, metabolic-, mood-, behavioral-, cognitive-, autism-spectrum-, stress- and pain-related disorders. The limited availability of information on the mechanisms, pathways and cause-and-effect relationships hinders us from translating and implementing the knowledge from the bench to the clinic. Implications: Further understanding of this intricate field might potentially shed light on novel preventive and therapeutic strategies to combat these disorders. Nutritional approaches, microbiome manipulations, enteric and brain barrier reinforcement and sensing and trafficking modulation might improve physical and mental health outcomes.
Journal Article
Cross-Reactivity and Sequence Homology Between Alpha-Synuclein and Food Products: A Step Further for Parkinson’s Disease Synucleinopathy
2021
Introduction: Parkinson’s disease is characterized by non-motor/motor dysfunction midbrain neuronal death and α-synuclein deposits. The accepted hypothesis is that unknown environmental factors induce α-synuclein accumulation in the brain via the enteric nervous system. Material and Methods: Monoclonal antibodies made against recombinant α-synuclein protein or α-synuclein epitope 118–123 were applied to the antigens of 180 frequently consumed food products. The specificity of those antibody-antigen reactions was confirmed by serial dilution and inhibition studies. The Basic Local Alignment Search Tool sequence matching program was used for sequence homologies. Results: While the antibody made against recombinant α-synuclein reacted significantly with 86/180 specific food antigens, the antibody made against α-synuclein epitope 118–123 reacted with only 32/180 tested food antigens. The food proteins with the greatest number of peptides that matched with α-synuclein were yeast, soybean, latex hevein, wheat germ agglutinin, potato, peanut, bean agglutinin, pea lectin, shrimp, bromelain, and lentil lectin. Conclusions: The cross-reactivity and sequence homology between α-synuclein and frequently consumed foods, reinforces the autoimmune aspect of Parkinson’s disease. It is hypothesized that luminal food peptides that share cross-reactive epitopes with human α-synuclein and have molecular similarity with brain antigens are involved in the synucleinopathy. The findings deserve further confirmation by extensive research.
Journal Article