Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
18 result(s) for "Levkovitz, Y"
Sort by:
The role of oxytocin in empathy to the pain of conflictual out-group members among patients with schizophrenia
Oxytocin (OT) is associated with our ability to empathize and has been shown to play a major role in mediating social behaviors within the context of intergroup dynamics. Schizophrenia is associated with impaired empathy, and with a dysfunctional oxytocinergic system. The effect of OT on the empathic responses of patients with schizophrenia within the context of intergroup relationships has not been studied. The present study examined the effect of OT on the patients' empathic responses to pain experienced by in-group, conflictual out-group and neutral out-group members. In a double-blind, placebo-controlled, within-subject cross-over design, the responses on the Pain Evaluation Task of 28 male patients with schizophrenia were compared to 27 healthy male controls. All participants received a single intranasal dose of 24 IU OT or placebo, 1 week apart. OT induced an empathy bias in the healthy controls towards the conflictual out-group members. Although this effect was absent in the patient group, OT seems to heighten an empathic bias in the patient group towards the in-group members when rating non-painful stimuli. The study demonstrates that the administration of OT can result in empathic bias towards adversary out-group members in healthy controls but not in patients with schizophrenia. However, the OT-induced bias in both the patients (in the no-pain condition towards the in-group members) and the healthy controls (in the no-pain and pain conditions towards the adversary out-group) suggests that OT enhances the distinction between conflictual in-group and out-group members.
Efficacy, tolerability, and cognitive effects of deep transcranial magnetic stimulation for late-life depression: a prospective randomized controlled trial
Late-life depression (LLD) is a growing worldwide problem due to demographic changes, with limited treatment options due to high rates of pharmacotherapy adverse effects, accessibility of psychotherapy, and tolerability of electroconvulsive therapy. Novel neuromodulation techniques, such as repetitive transcranial magnetic stimulation (rTMS), may overcome these limitations. The objective of this study is to determine the efficacy, tolerability, and cognitive effects of high-dose deep rTMS in LLD. In this study we randomized older adults between 60 and 85 years old with major depressive disorder (MDD) to sham or active deep rTMS (H1 coil, 6012 pulses, 18 Hz, 120% of resting motor threshold) delivered over the dorsolateral and ventrolateral prefrontal cortex 5 days per week over 4 weeks. Our primary outcome was remission of depression in an intention-to-treat analysis. We also assessed change in cognitive functioning with rTMS treatment and tolerability based on adverse effects. Fifty-two participants were randomized to active (n = 25) or sham H1 coil (n = 27). Remission rate was significantly higher with active than sham rTMS (40.0% vs 14.8%) with a number needed to treat of 4.0 (95% CI: 2.1–56.5). There was no change on any measure of executive function and no serious adverse events. Adverse effect profiles were similar between active and sham rTMS, except for reports of pain being significantly more common in the active condition (16.0% vs 0%). High-dose deep rTMS appears to be safe, well tolerated, and efficacious in the treatment of LLD.
Transcranial Magnetic Stimulation and Antidepressive Drugs Share Similar Cellular Effects in Rat Hippocampus
Transcranial magnetic stimulation (TMS) has been proposed as a safe and efficient treatment of human clinical depression. Although its antidepressive mechanism of action remained unknown, our previous studies indicate that TMS has a long-lasting effect on neuronal excitability in the hippocampus. We now compare the effects of chronic TMS with those of the antidepressant drugs desipramine and mianserin. The three treatments did not affect basal conduction in the perforant path to the dentate gyrus, but markedly suppressed paired-pulse and frequency-dependent inhibition, resulting from a reduction in local circuit inhibition in the dentate gyrus. Concomitantly, these treatments enhanced the expression of long-term potentiation in the perforant path synapse in the dentate gyrus. Finally, chronic TMS as well as mianserin suppressed the serotonin-dependent, potentiating action of fenfluramine on population spike in the dentate gyrus. Thus, TMS, mianserin, and desipramine are likely to affect the same neuronal populations, which may be relevant to their antidepressant action.
Oxytocin facilitates accurate perception of competition in men and kinship in women
Despite the dominant role of the hormone oxytocin (OT) in social behavior, little is known about the role of OT in the perception of social relationships. Furthermore, it is unclear whether there are sex differences in the way that OT affects social perception. Here, we employed a double-blind, placebo-controlled crossover design to investigate the effect of OT on accurate social perception. Following treatment, 62 participants completed the Interpersonal Perception Task, a method of assessing the accuracy of social judgments that requires identification of the relationship between people interacting in real life video clips divided into three categories: kinship, intimacy and competition. The findings suggest that OT had a general effect on improving accurate perception of social interactions. Furthermore, we show that OT also involves sex-specific characteristics. An interaction between treatment, task category and sex indicated that OT had a selective effect on improving kinship recognition in women, but not in men, whereas men's performance was improved following OT only for competition recognition. It is concluded that the gender-specific findings reported here may point to some biosocial differences in the effect of OT which may be expressed in women's tendency for communal and familial social behavior as opposed to men's tendency for competitive social behavior.
Non-specific effects of methylphenidate (Ritalin) on cognitive ability and decision-making of ADHD and healthy adults
Introduction The effect of a single dose of methylphenidate (MPH) on cognitive measures and decision-making processes was assessed in a sample of adults with ADHD and in a control sample. Methods Thirty-two adults satisfying DSM-IV criteria for ADHD and 26 healthy controls performed several cognitive tasks. Half of the participants received MPH prior to performing the tasks, and the other half received placebo in a randomized, double-blind manner. Results The average digit-span test score was higher in the groups receiving MPH compared to the groups receiving placebo, while diagnosis did not have an effect upon scores. In decision-making tasks, however, MPH did not have an effect upon performance, whereas in one of the tasks the average proportion of risky choices was higher in ADHD adults compared to controls. Conclusion Our data therefore demonstrates that (a) MPH is capable of enhancing specific aspects of cognitive performance and (b) this enhancement is not specific to ADHD.
Neuromodulation of Attentional Control in Major Depression: A Pilot DeepTMS Study
While Major Depressive Disorder (MDD) is primarily characterized by mood disturbances, impaired attentional control is increasingly identified as a critical feature of depression. Deep transcranial magnetic stimulation (deepTMS), a noninvasive neuromodulatory technique, can modulate neural activity and induce neuroplasticity changes in brain regions recruited by attentional processes. This study examined whether acute and long-term high-frequency repetitive deepTMS to the dorsolateral prefrontal cortex (DLPFC) can attenuate attentional deficits associated with MDD. Twenty-one MDD patients and 26 matched control subjects (CS) were administered the Beck Depression Inventory and the Sustained Attention to Response Task (SART) at baseline. MDD patients were readministered the SART and depressive assessments following a single session (n=21) and after 4 weeks (n=13) of high-frequency (20 Hz) repetitive deepTMS applied to the DLPFC. To control for the practice effect, CS (n=26) were readministered the SART a further two times. The MDD group exhibited deficits in sustained attention and cognitive inhibition. Both acute and long-term high-frequency repetitive frontal deepTMS ameliorated sustained attention deficits in the MDD group. Improvement after acute deepTMS was related to attentional recovery after long-term deepTMS. Longer-term improvement in sustained attention was not related to antidepressant effects of deepTMS treatment.
Differential Induction of Apoptosis by Antidepressants in Glioma and Neuroblastoma Cell Lines: Evidence for p-c-Jun, Cytochrome c, and Caspase-3 Involvement
Several antidepressants, mainly selective serotonin-reuptake inhibitors (SSRIs) and some tricyclic antidepressants (TCAs), have been shown to possess potent apoptotic activity in different cell lines. Our aim was to screen and select those agents with significant activity and elucidate the molecular pathway underlying this process in rat glioma and human neuroblastoma cell lines. We studied the effect of different antidepressants on apoptotic markers, including: cell viability, DNA fragmentation, cytochrome c (Cyt c) release from mitochondria, and caspase-3- like activity. In addition, the involvement of MAPK genes, c-Jun, and ERK was determined. Paroxetine and fluoxetine, SSRIs, clomipramine, a TCA, but not imipramine or mianserin (an atypical antidepressant), caused apoptosis in both cell lines, as assessed by flow cytometry of propidium iodide-stained C6 cells and typical fluorescence microscopy in glioma cells. These apoptotic changes were preceded by rapid increase in p-c-Jun levels, Cyt c release from mitochondria, and increased caspase-3-like activity. Assessment of paroxetine cytotoxicity in primary mouse brain and neuronal cultures showed significantly lower sensitivity to the drug's proapoptotic activity. These results strongly suggest that selected antidepressants induce apoptosis in neuronal and glial cell lines. Activation of p-c-Jun and subsequent increased Cyt c mitochondrial release participate in the apoptotic mechanism of the antidepressant. The high sensitivity to these drugs of the cancer cell, compared with primary brain tissue, suggests the potential use of these agents in the treatment of brain-derived tumors.
Characterization of Phenothiazine-Induced Apoptosis in Neuroblastoma and Glioma Cell Lines: Clinical Relevance and Possible Application for Brain-Derived Tumors
In this study we aimed to (1). screen phenothiazines for cytotoxic activity in glioma, neuroblastoma, and primary mouse brain tissue; and (2). determine the mechanism of the cytotoxic effect (apoptosis, necrosis) and the roles of calmodulin inhibition and sigma receptor modulation. Rat glioma (C6) and human neuroblastoma (SHSY-5Y) cell lines were treated with different phenothiazines. All agents induced a dose-dependent decrease in viability and proliferation, with the highest activity elicited by thioridazine. Sensitivity to thioridazine of glioma and neuroblastoma cells was significantly higher (p < 0.05) than that of primary mouse brain culture (IC50 11.2 and 15.1 microM vs 41.3 microM, respectively). The N-mustard fluphenazine induced significantly lower cytotoxicity in glioma cells, compared to fluphenazine. The sigma receptor selective ligand (+)-SK&F10047 increased viability slightly while combined with fluphenazine; SK&F10047 did not alter fluphenazine activity. Flow cytometry of propidium iodide (PI)-stained glioma cells treated with thioridazine, fluphenazine, or perphenazine (6-50 microM) resulted in a concentration-dependent increase of fragmented DNA up to 94% vs 3% in controls by all agents. Thioridazine (12.5 microM)-treated glioma cells costained with PI and Hoechst 33342 revealed a red fluorescence of fragmented nuclei in treated cells and a blue fluorescence of intact control nuclei. After 4-h exposure to thioridazine (25 and 50 microM), a 25- to 30-fold increase in caspase-3 activity in neuroblastoma cells was noted. Overall, the marked apoptotic effect of phenothiazines in brain-derived cancer cells, and the low sensitivity of primary brain tissue suggest the potential use of selected agents as therapeutic modalities in brain cancer.