Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
36 result(s) for "Lewicka, Aneta"
Sort by:
Effect of Different Wavelengths of Laser Irradiation on the Skin Cells
The invention of systems enabling the emission of waves of a certain length and intensity has revolutionized many areas of life, including medicine. Currently, the use of devices emitting laser light is not only an indispensable but also a necessary element of many diagnostic procedures. It also contributed to the development of new techniques for the treatment of diseases that are difficult to heal. The use of lasers in industry and medicine may be associated with a higher incidence of excessive radiation exposure, which can lead to injury to the body. The most exposed to laser irradiation is the skin tissue. The low dose laser irradiation is currently used for the treatment of various skin diseases. Therefore appropriate knowledge of the effects of lasers irradiation on the dermal cells’ metabolism is necessary. Here we present current knowledge on the clinical and molecular effects of irradiation of different wavelengths of light (ultraviolet (UV), blue, green, red, and infrared (IR) on the dermal cells.
The role of Chromium III in the organism and its possible use in diabetes and obesity treatment
Diabetes and obesity are diseases characterized by their increasing incidence every year. When comparing with healthy subjects, the serum levels of chromium (Cr) are lowered in these two diseases. Several studies conducted in laboratory animals with experimentally- induced diabetes demonstrated that supplementation with chromium ions (III) decreased glucose concentration in the blood, reduced the probability of atherosclerosis and heart attack, lowered the levels of cholesterol and low density lipoprotein (LDL). The Importance of chromium is actually challenged due to lack of clear manifestations of Cr deficiency in humans and animals. The aim of this review was to present current knowledge about Cr its role in the organism and possible mechanisms of its action also in metabolic disorders such as diabetes or obesity. In the last decade, Cr was established to be rather a beneficial than essential trace element in mammals, and has gained popularity as a nutritional supplement and a component of many multivitamin/mineral formulations, fortified food and energy drinks. Cr supplements are widespread for diabetes and obesity treatment, despite conflicting reports on its efficacy. It was suggested that Cr shows a beneficial influence upon glucose and lipid disturbances. The recent clinical trials provided evidence both in favor and against the importance of Cr in healthy and ill organisms. Unfortunately, also the molecular mechanism by which chromium affects glucose and lipid metabolism is still unclear. Beneficial effects of diet supplementation with different sources of Cr³⁺ can be potentially explained by rather pharmacological than nutritional effects.
Children were less frequently infected with SARS-CoV-2 than adults during 2020 COVID-19 pandemic in Warsaw, Poland
Clinical data suggest that during the current COVID-19 pandemic, children are less prone than adults to SARS-CoV-2 infection. Our purpose was to determine the frequency of SARS-CoV-2 in children vs. adults during the 2020 pandemic in Warsaw, Poland, and to investigate whether RSV and/or influenza A/B infections were associated with SARS-CoV-2 infections. We present results of RT-PCR tests for SARS-CoV-2 performed in Warsaw, Poland. Some of the pediatric subjects were also PCR-tested for RSV, and A and B influenza. We compared the test results from the four groups of symptomatic and asymptomatic subjects: 459 symptomatic pediatric patients (children 0–18 years old), 1774 symptomatic adults, 445 asymptomatic children, and 239 asymptomatic adults. 3.26% (15/459) of symptomatic pediatric patients were positive for SARS-CoV-2 in contrast to 5.58% (99/1774) of symptomatic adults (p = 0.0448). There were no SARS-CoV-2 positive cases in the group of asymptomatic children (0/445) and two positive cases in the group of asymptomatic adults (2/239), i.e., 0.83%. In the group of symptomatic pediatric patients, 17.14% (6/35) (p = 0.0002) were positive for RSV, 8.16% (4/49) were positive for influenza A, and 2.04% (1/49), thus 10.20% (5/49) (p = 0.0176) for influenza A/B. Children were less prone to SARS-CoV-2 infection than the adults during the COVID-19 pandemic in Warsaw. Higher percentage of symptomatic children was infected with RSV or influenza A/B than with SARS-CoV-2. This suggests a necessity for the testing for all these viruses for an early identification and isolation of SARS-CoV-2-positive patients for an ensuing 2020 autumn return of COVID-19.
Eosinophil–Basophil/Lymphocyte (EB/LR) and Eosinophil–Basophil–Platelet/Lymphocyte (EBP/LR) Ratios Could Serve as Useful Additional Markers for Assessing the Severity of Wasp Allergic Reactions
Wasp venom allergy can trigger severe allergic reactions, and predicting these acute responses remains challenging. This study evaluates the utility of immune system indexes, particularly the eosinophil–basophil/lymphocyte (EB/LR) and eosinophil–basophil–platelet/lymphocyte (EBP/LR) ratios, in assessing the severity of allergic reactions in patients with wasp venom allergy. A total of 61 patients with confirmed wasp venom allergy were categorized according to the Mueller scale, which classifies the severity of allergic reactions. Blood samples were analyzed for total and specific IgE levels alongside a range of hematological and biochemical parameters. This study found significant differences in the EB/LR and EBP/LR indexes between patients with mild (Mueller I–II) and severe (Mueller III–IV) allergic reactions, with higher values indicating more severe responses. However, no significant differences were observed in other immune indexes, such as the platelet-to-lymphocyte ratio, neutrophil-to-lymphocyte ratio, systemic immune-inflammation index, and systemic inflammatory response index, as well as in additional blood parameters. These findings suggest that the EB/LR and EBP/LR ratios may serve as useful markers for predicting the severity of allergic reactions in patients with wasp venom allergy. This is the first study to establish such a link, although further research with larger cohorts is necessary to confirm these results and their potential application in clinical settings.
Role of α7 nicotinic receptor in the immune system and intracellular signaling pathways
Acetylcholine has been well known as one of the most exemplary neurotransmitters. In humans, this versatile molecule and its synthesizing enzyme, choline acetyltransferase, have been found in various non-neural tissues such as the epithelium, endothelium, mesothelium muscle, blood cells and immune cells. The non-neuronal acetylcholine is accompanied by the expression of acetylcholinesterase and nicotinic/muscarinic acetylcholine receptors. Increasing evidence of the non-neuronal acetylcholine system found throughout the last few years has indicated this neurotransmitter as one of the major cellular signaling molecules (associated e.g. with kinases and transcription factors activity). This system is responsible for maintenance and optimization of the cellular function, such as proliferation, differentiation, adhesion, migration, intercellular contact and apoptosis. Additionally, it controls proper activity of immune cells and affects differentiation, antigen presentation or cytokine production (both pro- and anti-inflammatory). The present article reviews recent findings about the non-neuronal cholinergic system in the field of immune system and intracellular signaling pathways.
The Supporting Role of Hyperbaric Oxygen Therapy in Atopic Dermatitis Treatment
Over the past decades, atopic diseases have emerged as a growing global health concern. The Global Report on Atopic Dermatitis 2022 estimated that approximately 223 million people worldwide were living with atopic dermatitis in 2022, with around 43 million being children or adolescents. The financial burden associated with the treatment of this condition poses a significant challenge for both healthcare systems and patients. The current therapeutic approach for atopic diseases primarily focuses on symptomatic management, aiming to mitigate the effects of an overactive immune system. The most widely used treatments include topical or systemic corticosteroids, which suppress inflammation, and emollients, which help restore the skin barrier function. However, prolonged corticosteroid use is associated with adverse effects, including impaired immune response and reduced ability to combat external and internal threats. Consequently, there is a growing interest in developing alternative therapeutic strategies for managing atopic dermatitis. Among these emerging treatments, hyperbaric oxygen therapy (HBOT) appears particularly promising. HBOT has a beneficial effect on the vascular and immune systems, which results in improved functioning of tissues and organs. This therapy has demonstrated efficacy in promoting wound healing, particularly in conditions such as thermal burns and diabetic foot ulcers. Given these properties, HBOT is being tested as a potential adjunctive therapy for atopic dermatitis and other allergy-related diseases. In this paper, we present the current state of knowledge regarding the application of HBOT in the treatment of atopic and immune-mediated conditions, with a focus on its immunomodulatory and regenerative effects.
Diamond Nanoparticles Downregulate Expression of CycD and CycE in Glioma Cells
Our previous studies have shown that diamond nanoparticles (NDs) exhibited antiangiogenic and proapoptotic properties in vitro in glioblastoma multiforme (GBM) cells and in tumors in vivo. Moreover, NDs inhibited adhesion, leading to the suppression of migration and invasion of GBM. In the present study, we hypothesized that the NDs might also inhibit proliferation and cell cycle in glioma cells. Experiments were performed in vitro with the U87 and U118 lines of GBM cells, and for comparison, the Hs5 line of stromal cells (normal cells) after 24 h and 72 h of treatment. The analyses included cell morphology, cell death, viability, and cell cycle analysis, double timing assay, and gene expression (Rb, E2F1, CycA, CycB, CycD, CycE, PTEN, Ki-67). After 72 h of ND treatment, the expression level of Rb, CycD, and CycE in the U118 cells, and E2F1, CycD, and CycE in the U87 cells were significantly lower in comparison to those in the control group. We observed that decreased expression of cyclins inhibited the G1/S phase transition, arresting the cell cycle in the G0/G1 phase in glioma cells. The NDs did not affect the cell cycle as well as PTEN and Ki-67 expression in normal cells (Hs5), although it can be assumed that the NDs reduced proliferation and altered the cell cycle in fast dividing cells.
Differential Effects of Resveratrol on HECa10 and ARPE-19 Cells
Age-related macular degeneration (AMD) and diabetic retinopathy are the leading cause of blindness in developed countries. Pathological angiogenesis has a causal role in these eye diseases. Resveratrol (RSV), a plant-derived polyphenol, has anti-proliferative and anti-angiogenic properties that could improve its management. Here, the effects of various concentrations of RSV (1, 5, 10, 50, 100 µM) were compared in two types of cell lines: HECa10 (endothelial cell line) and ARPE-19 (retinal pigment epithelial cell line). We assayed the impact on proliferation rate, viability, cell cycle progression, and secretion of selected proangiogenic factors VEGF and bFGF. We show that lower concentrations of RSV (1, 5, 10 µM) had no effect on proliferation, viability or cell cycle progression in HECa10 cells. However, higher concentrations (50, 100 µM) significantly enhanced the reduction in the cell number and stimulated apoptosis. In ARPE-19 cells, lower concentrations of RSV increased the rate of proliferation, while higher concentrations had no effect on proliferation and viability. Both ARPE-19 and HECa10 cell lines were affected to different degrees in the secretion of proangiogenic cytokines: reducing VEGF and enhancing bFGF secretion. These results suggest that RSV may be useful in the prevention or treatment of pathological angiogenesis in eye disorders.
Encapsulation of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor in liposomes prepared by thin film hydration and their transfer to mesenchymal stem cells and cord blood hematopoietic stem cells
Introduction:Cytokines are important immune modulator factors controlling homeostasis of the body and are involved in tissue regeneration after wound healing. The encapsulation of cytokines in liposomes has many advantages potentially useful for their transfer to the cells. Liposomes protect cytokines from neutralization, improving their pharmacokinetics or biologic activity in vivo. They are targeted to specific cell types and may delay the release of cytokines, allowing their sustained paracrine delivery. Their physicochemical characteristics such as size, shape, charge, and stability are important parameters improving bio-distribution and prolonged pharmacokinetics of encapsulated cytokines.Material and methods:We developed an efficient protocol for the encapsulation of two types of cytokines, granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF), in liposomes that can be stored long term in the active state.Results:This method allows for the encapsulation of 12–13% of the total amount of cytokines and 50% of encapsulated cytokines are entrapped in liposomes of more than ≤ 600 nm in diameter. We show that in the studied cell lines the liposome-encapsulated cytokines do not affect cell morphology, proliferation or mortality.Conclusions:The G-CSF or GM-CSF can be delivered to the cells in working concentrations through the encapsulation in the liposomes. Before the clinical application, the efficiency of these liposomes should be confirmed by an in vivo study.
Influence of protein deficient diet, vitamin B2 supplementation and physical training on serum composition of polyunsaturated fatty acids (PUFAs) in rats
Introduction: Prolonged shortages of protein in the diet significantly alter the composition and content of polyunsaturated fatty acids (PUFA) in tissues and body fluids. One of nutritional factors which may reduce negative effects of protein malnutrition might be vitamin B2 due to its influence on lipids metabolism. Objective: The aim of the study was to investigate the influence of low protein (LP) diet enriched with vitamin B2 on the content and composition of PUFA in the blood serum of rats treated with dosed physical exercise. Material and Methods: The experiment was carried out for 3 months on 72 growing male Wistar rats divided into 5 groups. Animals were fed ad libitum on a diet with an energy value of 350 kcal/100 g, in which 4.5% of the energy was provided by protein. In the control diet, 20% of the energy was provided by protein. Two groups were fed the diet enriched with vitamin B2. The two groups of tested animals were trained for 5 days a week. Results: LP diet caused a decrease in α-linolenic acid (ALA) after 30 days, and a decrease in docosahexaenoic acid (DHA) after 60 days of experiment, compared with rats fed the control diet. After 60 and 90 days of the experiment, a significant decrease was noted in arachidonic acid (AA) in serum of trained rats, compared with sedentary rats fed the LP diet. Physical activity increased LA (mainly on day 30), EPA (on day 90) and reduced AA content (on day 90) in serum of rats fed the LP diet. B2 supplementation in the trained LP group did not change the EPA and AA dependence; however, there was a decrease in LA content in comparison to the non-supplemented trained group. Conclusions: Results of this study suggest that all investigated factors (protein deficiency, physical exercise and supplementation of vitamin B2) have significant impact on PUFA composition of serum in rats.