Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Lexa, Katrina W."
Sort by:
A Structure-Based Model for Predicting Serum Albumin Binding
One of the many factors involved in determining the distribution and metabolism of a compound is the strength of its binding to human serum albumin. While experimental and QSAR approaches for determining binding to albumin exist, various factors limit their ability to provide accurate binding affinity for novel compounds. Thus, to complement the existing tools, we have developed a structure-based model of serum albumin binding. Our approach for predicting binding incorporated the inherent flexibility and promiscuity known to exist for albumin. We found that a weighted combination of the predicted logP and docking score most accurately distinguished between binders and nonbinders. This model was successfully used to predict serum albumin binding in a large test set of therapeutics that had experimental binding data.
Mechanistic Study of the Gas-Phase In-Source Hofmann Elimination of Doubly Quaternized Cinchona-Alkaloid Based Phase-Transfer Catalysts by (+)-Electrospray Ionization/Tandem Mass Spectrometry
An unusual in-source fragmentation pattern observed for 14 doubly quaternized cinchona alkaloid-based phase-transfer catalysts (PTC) was studied using (+)-ESI high resolution mass spectrometry. Loss of the substituted benzyl cation (R1 or R2) was found to be the major product ion [M 2+ – R 1 + or R 2 + ] + in MS spectra of all PTC compounds. A Hofmann elimination product ion [M – H] + was also observed. Only a small amount of the doubly charged M 2+ ions were observed in the MS spectra, likely due to strong Columbic repulsion between the two quaternary ammonium cations in the gas phase. The positive voltage in the MS inlet but not the ESI probe was found to induce this extensive fragmentation for all PTC diboromo-salts. Compound 1 was used as an example to illustrate the proposed in-source fragmentation mechanism. The mechanism of formation of the Hofmann elimination product ion [M – H] + was further investigated using HRMS/MS, H/D exchange, and DFT calculations. The proposed formation of 2b as the major Hofmann elimination product ion was supported both by HRMS/MS and DFT calculations. Formation of product ion 2b through a concerted unimolecular E i elimination pathway is proposed rather than a bimolecular E2 elimination pathway for common solution Hofmann eliminations. Graphical Abstract ᅟ
Protein flexibility in docking and surface mapping
Structure-based drug design has become an essential tool for rapid lead discovery and optimization. As available structural information has increased, researchers have become increasingly aware of the importance of protein flexibility for accurate description of the native state. Typical protein–ligand docking efforts still rely on a single rigid receptor, which is an incomplete representation of potential binding conformations of the protein. These rigid docking efforts typically show the best performance rates between 50 and 75%, while fully flexible docking methods can enhance pose prediction up to 80–95%. This review examines the current toolbox for flexible protein–ligand docking and receptor surface mapping. Present limitations and possibilities for future development are discussed.
CD98hc is a target for brain delivery of biotherapeutics
Brain exposure of systemically administered biotherapeutics is highly restricted by the blood-brain barrier (BBB). Here, we report the engineering and characterization of a BBB transport vehicle targeting the CD98 heavy chain (CD98hc or SLC3A2) of heterodimeric amino acid transporters (TV CD98hc ). The pharmacokinetic and biodistribution properties of a CD98hc antibody transport vehicle (ATV CD98hc ) are assessed in humanized CD98hc knock-in mice and cynomolgus monkeys. Compared to most existing BBB platforms targeting the transferrin receptor, peripherally administered ATV CD98hc demonstrates differentiated brain delivery with markedly slower and more prolonged kinetic properties. Specific biodistribution profiles within the brain parenchyma can be modulated by introducing Fc mutations on ATV CD98hc that impact FcγR engagement, changing the valency of CD98hc binding, and by altering the extent of target engagement with Fabs. Our study establishes TV CD98hc as a modular brain delivery platform with favorable kinetic, biodistribution, and safety properties distinct from previously reported BBB platforms. New delivery platforms are needed to allow broader application of biotherapeutics for CNS diseases. Here, the authors show enhanced CNS delivery with a transport vehicle engineered to bind CD98hc, a highly expressed target at the blood-brain barrier.
Immune factor of bacterial origin protects ticks against host skin microbes
Hard ticks are blood-feeding arthropods that carry and transmit microbes to their vertebrate hosts1. Tick-borne disease cases have been on the rise over the last several decades, drawing much-needed attention to the molecular interplay between transmitted pathogens and their human hosts. However, far less is known about how ticks control their own microbes, which is critical for understanding how zoonotic transmission cycles persist. We previously found that ticks horizontally acquired an antimicrobial toxin gene from bacteria known as domesticated amidase effector 2 (dae2)2. Here we show that this effector from the tick vector Ixodes scapularis (Dae2Is) has structurally and biochemically diverged from ancestral bacterial representatives, expanding its antibacterial targeting range to include host skin microbes. Disruption of dae2Is increases the burden of skin-associated staphylococci within I. scapularis and adversely affects tick fitness, suggesting resistance of host microbes may be important for the parasitic blood-feeding lifestyle. In contrast, Dae2Is has no intrinsic ability to kill Borrelia burgdorferi, the tick-borne bacterium of Lyme disease. Our observations suggest that ticks have evolved to tolerate their own symbionts while resisting host skin commensals, which we discover are natural opportunistic pathogens of ticks. This work moves our understanding of vector biology beyond a human-centric view: just as tick commensals are pathogenic to humans, so too do our commensals pose a threat to ticks. These observations illuminate how a complex and mirrored set of interkingdom interactions between blood-feeding vectors, their hosts, and associated microbes can ultimately lead to disease.
Immune factor of bacterial origin protects ticks against host microbial commensals
Hard ticks interface with diverse microbes while feeding on vertebrate hosts. We previously discovered that ticks horizontally acquired an antimicrobial toxin gene from bacteria known as domesticated amidase effector 2 (dae2). Here we show that this effector from the tick disease vector Ixodes scapularis (Dae2Is) is delivered to the host bite site via saliva and that its structural and biochemical divergence from bacterial homologs results in an expanded targeting range to include host skin microbes. Upon disruption of dae2Is, we found higher loads of skin-associated staphylococci within ticks, adversely affecting their fitness. In contrast, Dae2Is has no intrinsic lytic activity against Borrelia burgdorferi, the tick-borne pathogen of Lyme disease. Our observations suggest ticks have evolved to preferentially resist opportunistic pathogens, such as host skin commensals, while tolerating their own symbionts. These results highlight a unique interkingdom interface between blood-feeding vectors, hosts, and their associated microbes where incompatible host-microbe interactions lead to disease. Competing Interest Statement The authors have declared no competing interest.