Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
110 result(s) for "Li, Bai-Lian"
Sort by:
Phytoplankton Communities’ Response to Thermal Stratification and Changing Environmental Conditions in a Deep-Water Reservoir: Stochastic and Deterministic Processes
Thermal stratification has become more extensive and prolonged because of global warming, and this change has had a significant impact on the distribution patterns of the phytoplankton communities. However, the response of phytoplankton community structures and assembly processes to thermal stratification is not fully understood. We predicted that the structure and assembly processes of phytoplankton communities would be affected by thermal stratification among water layers associated with environmental condition changes, reflecting certain patterns in temporal and spatial scales. Phytoplankton from Danjiangkou Reservoir were collected from October 2021 to July 2022 to verify this prediction. During the sampling period, Danjiangkou Reservoir remained thermally stratified with stability. The composition of the phytoplankton community in the surface layer significantly differed from that in both the thermocline and bottom layer. The phenomenon of thermal stratification affected the pattern of nitrogen and phosphorus distribution and, thus, the processes of the phytoplankton community structures. Deterministic processes had a greater influence on the assembly of the phytoplankton communities in the surface and bottom layers. In contrast, stochastic processes were more prevalent in the assembly of the thermocline phytoplankton community. The phytoplankton community within the thermocline layer exhibited a broader niche range than that in the surface and bottom layers, showing notable dissimilarity from that of the bottom layer. Canonical correspondence analysis (CCA) revealed that the vertical distributions of the phytoplankton communities were significantly correlated with NH4+-N, pH, and water temperature (WT). In summary, this study explained the distribution patterns of phytoplankton community structures and assembly processes in deep-water reservoirs during the stratification period. Additionally, the study explored the potential of using the distribution patterns of phytoplankton in stratified-state deep-water reservoirs under a subtropical–warm temperate climate as climate indicators in the context of global warming.
Effects of agricultural intensification on ability of natural enemies to control aphids
Agricultural intensification through increasing fertilization input and cropland expansion has caused rapid loss of semi-natural habitats and the subsequent loss of natural enemies of agricultural pests. It is however extremely difficult to disentangle the effects of agricultural intensification on arthropod communities at multiple spatial scales. Based on a two-year study of seventeen 1500 m-radius sites, we analyzed the relative importance of nitrogen input and cropland expansion on cereal aphids and their natural enemies. Both the input of nitrogen fertilizer and cropland expansion benefited cereal aphids more than primary parasitoids and leaf-dwelling predators, while suppressing ground-dwelling predators, leading to an disturbance of the interspecific relationship. The responses of natural enemies to cropland expansion were asymmetric and species-specific, with an increase of primary parasitism but a decline of predator/pest ratio with the increasing nitrogen input. As such, agricultural intensification (increasing nitrogen fertilizer and cropland expansion) can destabilize the interspecific relationship and lead to biodiversity loss. To this end, sustainable pest management needs to balance the benefit and cost of agricultural intensification and restore biocontrol service through proliferating the role of natural enemies at multiple scales.
What is the role of aerosol transmission in SARS-Cov-2 Omicron spread in Shanghai?
The Omicron transmission has infected nearly 600,000 people in Shanghai from March 26 to May 31, 2022. Combined with different control measures taken by the government in different periods, a dynamic model was constructed to investigate the impact of medical resources, shelter hospitals and aerosol transmission generated by clustered nucleic acid testing on the spread of Omicron. The parameters of the model were estimated by least square method and MCMC method, and the accuracy of the model was verified by the cumulative number of asymptomatic infected persons and confirmed cases in Shanghai from March 26 to May 31, 2022. The result of numerical simulation demonstrated that the aerosol transmission figured prominently in the transmission of Omicron in Shanghai from March 28 to April 30. Without aerosol transmission, the number of asymptomatic subjects and symptomatic cases would be reduced to 130,000 and 11,730 by May 31, respectively. Without the expansion of shelter hospitals in the second phase, the final size of asymptomatic subjects and symptomatic cases might reach 23.2 million and 4.88 million by May 31, respectively. Our results also revealed that expanded vaccination played a vital role in controlling the spread of Omicron. However, even if the vaccination rate were 100%, the transmission of Omicron should not be completely blocked. Therefore, other control measures should be taken to curb the spread of Omicron, such as widespread antiviral therapies, enhanced testing and strict tracking quarantine measures. This perspective could be utilized as a reference for the transmission and prevention of Omicron in other large cities with a population of 10 million like Shanghai.
Spatial patterns of a predator-prey model with cross diffusion
In this paper, spatial patterns of a Holling–Tanner predator-prey model subject to cross diffusion, which means the prey species exercise a self-defense mechanism to protect themselves from the attack of the predator are investigated. By using the bifurcation theory, the conditions of Hopf and Turing bifurcation critical line in a spatial domain are obtained. A series of numerical simulations reveal that the typical dynamics of population density variation is the formation of isolated groups, such as spotted, stripe-like, or labyrinth patterns. Our results confirm that cross diffusion can create stationary patterns, which enrich the finding of pattern formation in an ecosystem.
Emerging Microplastics Alter the Influences of Soil Animals on the Fungal Community Structure in Determining the Litter Decomposition of a Deciduous Tree
Microplastics enter forest ecosystems in a variety of ways, including through atmospheric deposition, anthropogenic waste, and leaching. There is growing evidence of the ecotoxicity of microplastics to soil decomposers. Soil animals and microorganisms are the main decomposers of plant litter, and their interactions play important roles in determining the terrestrial biochemical cycle. However, how emerging microplastics in forests affect the influence of soil animals on the fungal community in decomposed litter is still unclear. Here, by constructing a rigorous mesocosm experiment, we investigated soil enzyme activities and the variation in fungal community characteristics in the leaf litter of a deciduous tree, Lindera glauca, which was decomposed by contrasting decomposer structures (with or without soil animals) under different contamination conditions (with or without microplastic contamination), aiming to determine the impacts of these factors on litter decomposition. We found that soil animals can significantly depress the litter decomposition rate by reducing fungal diversity and largely changing the community structure in the litter. However, these critical changes caused by soil animals were inhibited in the mesocosms contaminated with high-density polyethylene microplastics (HDPE−MPs), during which soil animal activities were significantly reduced. These findings represent a step forward in illustrating the potential effect of emerging contamination stress on forest litter decomposition and biogeochemical cycles under global environmental change.
Life’s Energy and Information: Contrasting Evolution of Volume- versus Surface-Specific Rates of Energy Consumption
As humanity struggles to find a path to resilience amidst global change vagaries, understanding organizing principles of living systems as the pillar for human existence is rapidly growing in importance. However, finding quantitative definitions for order, complexity, information and functionality of living systems remains a challenge. Here, we review and develop insights into this problem from the concept of the biotic regulation of the environment developed by Victor Gorshkov (1935–2019). Life’s extraordinary persistence—despite being a strongly non-equilibrium process—requires a quantum-classical duality: the program of life is written in molecules and thus can be copied without information loss, while life’s interaction with its non-equilibrium environment is performed by macroscopic classical objects (living individuals) that age. Life’s key energetic parameter, the volume-specific rate of energy consumption, is maintained within universal limits by most life forms. Contrary to previous suggestions, it cannot serve as a proxy for “evolutionary progress”. In contrast, ecosystem-level surface-specific energy consumption declines with growing animal body size in stable ecosystems. High consumption by big animals is associated with instability. We suggest that the evolutionary increase in body size may represent a spontaneous loss of information about environmental regulation, a manifestation of life’s algorithm ageing as a whole.
Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape
Tree-rings are often assumed to approximate a circular shape when estimating forest productivity and carbon dynamics. However, tree rings are rarely, if ever, circular, thereby possibly resulting in under- or over-estimation in forest productivity and carbon sequestration. Given the crucial role played by tree ring data in assessing forest productivity and carbon storage within a context of global change, it is particularly important that mathematical models adequately render cross-sectional area increment derived from tree rings. We modeled the geometric shape of tree rings using the superellipse equation and checked its validation based on the theoretical simulation and six actual cross sections collected from three conifers. We found that the superellipse better describes the geometric shape of tree rings than the circle commonly used. We showed that a spiral growth trend exists on the radial section over time, which might be closely related to spiral grain along the longitudinal axis. The superellipse generally had higher accuracy than the circle in predicting the basal area increment, resulting in an improved estimate for the basal area. The superellipse may allow better assessing forest productivity and carbon storage in terrestrial forest ecosystems.
Plant Growth-Promoting Bacteria Influence Microbial Community Composition and Metabolic Function to Enhance the Efficiency of Hybrid pennisetum Remediation in Cadmium-Contaminated Soil
The green and efficient remediation of soil cadmium (Cd) is an urgent task, and plant-microbial joint remediation has become a research hotspot due to its advantages. High-throughput sequencing and metabolomics have technical advantages in analyzing the microbiological mechanism of plant growth-promoting bacteria in improving phytoremediation of soil heavy metal pollution. In this experiment, a pot trial was conducted to investigate the effects of inoculating the plant growth-promoting bacterium Enterobacter sp. VY on the growth and Cd remediation efficiency of the energy plant Hybrid pennisetum. The test strain VY-1 was analyzed using high-throughput sequencing and metabolomics to assess its effects on microbial community composition and metabolic function. The results demonstrated that Enterobacter sp. VY-1 effectively mitigated Cd stress on Hybrid pennisetum, resulting in increased plant biomass, Cd accumulation, and translocation factor, thereby enhancing phytoremediation efficiency. Analysis of soil physical-chemical properties revealed that strain VY-1 could increase soil total nitrogen, total phosphorus, available phosphorus, and available potassium content. Principal coordinate analysis (PCoA) indicated that strain VY-1 significantly influenced bacterial community composition, with Proteobacteria, Firmicutes, Chloroflexi, among others, being the main differential taxa. Redundancy analysis (RDA) revealed that available phosphorus, available potassium, and pH were the primary factors affecting bacterial communities. Partial Least Squares Discriminant Analysis (PLS-DA) demonstrated that strain VY-1 modulated the metabolite profile of Hybrid pennisetum rhizosphere soil, with 27 differential metabolites showing significant differences, including 19 up-regulated and eight down-regulated expressions. These differentially expressed metabolites were primarily involved in metabolism and environmental information processing, encompassing pathways such as glutamine and glutamate metabolism, α-linolenic acid metabolism, pyrimidine metabolism, and purine metabolism. This study utilized 16S rRNA high-throughput sequencing and metabolomics technology to investigate the impact of the plant growth-promoting bacterium Enterobacter sp. VY-1 on the growth and Cd enrichment of Hybrid pennisetum, providing insights into the regulatory role of plant growth-promoting bacteria in microbial community structure and metabolic function, thereby improving the microbiological mechanisms of phytoremediation.
Bifurcations and chaos in a predator-prey system with the Allee effect
It is known from many theoretical studies that ecological chaos may have numerous significant impacts on the population and community dynamics. Therefore, identification of the factors potentially enhancing or suppressing chaos is a challenging problem. In this paper, we show that chaos can be enhanced by the Allee effect. More specifically, we show by means of computer simulations that in a time-continuous predator-prey system with the Allee effect the temporal population oscillations can become chaotic even when the spatial distribution of the species remains regular. By contrast, in a similar system without the Allee effect, regular species distribution corresponds to periodic/quasi-periodic oscillations. We investigate the routes to chaos and show that in the spatially regular predator-prey system with the Allee effect, chaos appears as a result of series of period-doubling bifurcations. We also show that this system exhibits period-locking behaviour: a small variation of parameters can lead to alternating regular and chaotic dynamics.