Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
1,079
result(s) for
"Li, Da-Wei"
Sort by:
DEEP picker is a deep neural network for accurate deconvolution of complex two-dimensional NMR spectra
2021
The analysis of nuclear magnetic resonance (NMR) spectra for the comprehensive and unambiguous identification and characterization of peaks is a difficult, but critically important step in all NMR analyses of complex biological molecular systems. Here, we introduce DEEP Picker, a deep neural network (DNN)-based approach for peak picking and spectral deconvolution which semi-automates the analysis of two-dimensional NMR spectra. DEEP Picker includes 8 hidden convolutional layers and was trained on a large number of synthetic spectra of known composition with variable degrees of crowdedness. We show that our method is able to correctly identify overlapping peaks, including ones that are challenging for expert spectroscopists and existing computational methods alike. We demonstrate the utility of DEEP Picker on NMR spectra of folded and intrinsically disordered proteins as well as a complex metabolomics mixture, and show how it provides access to valuable NMR information. DEEP Picker should facilitate the semi-automation and standardization of protocols for better consistency and sharing of results within the scientific community.
The analysis of NMR spectra of complex biochemical samples with respect to individual resonances is challenging but critically important. Here, the authors present a deep learning-based method that accelerates this process also for crowded NMR data that are non-trivial to analyze, even by expert NMR spectroscopists.
Journal Article
Research advances in smart responsive-hydrogel dressings with potential clinical diabetic wound healing properties
2023
The treatment of chronic and non-healing wounds in diabetic patients remains a major medical problem. Recent reports have shown that hydrogel wound dressings might be an effective strategy for treating diabetic wounds due to their excellent hydrophilicity, good drug-loading ability and sustained drug release properties. As a typical example, hyaluronic acid dressing (Healoderm) has been demonstrated in clinical trials to improve wound-healing efficiency and healing rates for diabetic foot ulcers. However, the drug release and degradation behavior of clinically-used hydrogel wound dressings cannot be adjusted according to the wound microenvironment. Due to the intricacy of diabetic wounds, antibiotics and other medications are frequently combined with hydrogel dressings in clinical practice, although these medications are easily hindered by the hostile environment. In this case, scientists have created responsive-hydrogel dressings based on the microenvironment features of diabetic wounds (such as high glucose and low pH) or combined with external stimuli (such as light or magnetic field) to achieve controllable drug release, gel degradation, and microenvironment improvements in order to overcome these clinical issues. These responsive-hydrogel dressings are anticipated to play a significant role in diabetic therapeutic wound dressings. Here, we review recent advances on responsive-hydrogel dressings towards diabetic wound healing, with focus on hydrogel structure design, the principle of responsiveness, and the behavior of degradation. Last but not least, the advantages and limitations of these responsive-hydrogels in clinical applications will also be discussed. We hope that this review will contribute to furthering progress on hydrogels as an improved dressing for diabetic wound healing and practical clinical application.
Journal Article
Genome-wide analysis of coding and non-coding RNA reveals a conserved miR164-NAC regulatory pathway for fruit ripening
by
Wang, Jian
,
Yin, Xue-ren
,
Li, Da-wei
in
1-aminocyclopropane-1-carboxylate synthase
,
Actinidia
,
Actinidia - physiology
2020
Kiwifruit (Actinidia spp.) is a climacteric fruit with high sensitivity to ethylene, influenced by multiple ethylene-responsive structural genes and transcription factors. However, the roles of other post-transcriptional regulators (e.g. miRNAs) necessary for ripening remain elusive.
High-throughput sequencing sRNAome, degradome and transcriptome methods were used to identify further contributors to ripening control in the kiwifruit (A. deliciosa cv ‘Hayward’).
Two NAM/ATAF/CUC domain transcription factors (AdNAC6 and AdNAC7), both predicted targets for miR164, showed significant upregulation by exogenous ethylene. Gene expression analysis and luciferase reporter assays indicated that Ade-miR164 and one of its precursor miRNAs (Ade-MIR164b) were repressed by ethylene treatment and negatively correlated with AdNAC6/7 expression. Subsequent analysis indicated that both AdNAC6 and AdNAC7 proteins are transcriptional activators and physically bind the promoters of AdACS1 (1-aminocyclopropane-1-carboxylate synthase), AdACO1 (1-aminocyclopropane-1-carboxylic acid oxidase), AdMAN1 (endo-β-mannanase) and AaTPS1 (terpene synthase). Moreover, subcellular analysis indicated that the location of the AdNAC6/7 proteins was influenced by Ade-miR164.
Multiple omics-based approaches revealed a novel regulatory link for fruit ripening that involved ethylene-miR164-NAC. The regulatory pathway for miR164-NAC is present in various fruit (e.g. Rosaceae fruit, citrus, grape), with implications for fruit ripening regulation.
Journal Article
Occurrence of plastidial triacylglycerol synthesis and the potential regulatory role of AGPAT in the model diatom Phaeodactylum tricornutum
2017
Background Microalgae have emerged as a potential feedstock for biofuels and bioactive components. However, lack of microalgal strains with promising triacylglycerol (TAG) content and desirable fatty acid composition have hindered its commercial feasibility. Attempts on lipid overproduction by metabolic engineering remain largely challenging in microalgae. Results In this study, a microalgal 1-acyl-sn-glycerol-3-phosphate acyltransferase designated AGPAT1 was identified in the model diatom Phaeodactylum tricornutum. AGPAT1 contained four conserved acyltransferase motifs I-IV. Subcellular localization prediction and thereafter immuno-electron microscopy revealed the localization of AGPAT1 to plastid membranes. AGPAT1 overexpression significantly altered the primary metabolism, with increased total lipid content but decreased content of total carbohydrates and soluble proteins. Intriguingly, AGPAT1 overexpression coordinated the expression of other key genes such as DGAT2 and GPAT involved in TAG synthesis, and consequently increased TAG content by 1.81-fold with a significant increase in polyunsaturated fatty acids, particularly EPA and DHA. Moreover, besides increased lipid droplets in the cytosol, ultrastructural observation showed a number of TAG-rich plastoglobuli formed in plastids. Conclusion The results suggested that AGPAT1 overexpression could elevate TAG biosynthesis and, moreover, revealed the occurrence of plastidial TAG synthesis in the diatom. Overall, our data provide a new insight into microalgal lipid metabolism and candidate target for metabolic engineering.
Journal Article
Molecular characterization of a glycerol-3-phosphate acyltransferase reveals key features essential for triacylglycerol production in Phaeodactylum tricornutum
2016
Background The marine diatom, Phaeodactylum tricornutum, has become a model for studying lipid metabolism and its triacylglycerol (TAG) synthesis pathway makes it an ideal target for metabolic engineering to improve lipid productivity. However, the genetic background and metabolic networks of fatty acid biosynthesis in diatoms are not well understood. Glycerol-3-phosphate acyltransferase (GPAT) is the critical enzyme that catalyzes the first step of TAG formation. So far, characterization of GPAT in marine microalgae has not been reported, especially at the level of comprehensive sequence-structure and functional analysis. Results A GPAT was cloned from P. tricornutum and overexpressed in P. tricornutum. Volumes of oil bodies were produced and the neutral lipid content was increased by twofold determined by Nile red fluorescence staining. Fatty acid composition was analyzed by GC-MS, which showed significantly higher proportion of unsaturated fatty acids compared to wild type. Conclusion These results suggested that the identified GPAT could upregulate TAG biosynthesis in P. tricornutum. Moreover, this study offers insight into the lipid metabolism of diatoms and supports the role of microalgal strains for biofuels production.
Journal Article
Neovascularization and tissue regeneration by endothelial progenitor cells in ischemic stroke
2021
Abstract Endothelial progenitor cells (EPCs) are immature endothelial cells (ECs) capable of proliferating and differentiating into mature ECs. These progenitor cells migrate from bone marrow (BM) after vascular injury to ischemic areas, where they participate in the repair of injured endothelium and new blood vessel formation. EPCs also secrete a series of protective cytokines and growth factors that support cell survival and tissue regeneration. Thus, EPCs provide novel and promising potential therapies to treat vascular disease, including ischemic stroke. However, EPCs are tightly regulated during the process of vascular repair and regeneration by numerous endogenous cytokines that are associated closely with the therapeutic efficacy of the progenitor cells. The regenerative capacity of EPCs also is affected by a range of exogenous factors and drugs as well as vascular risk factors. Understanding the functional properties of EPCs and the factors related to their regenerative capacity will facilitate better use of these progenitor cells in treating vascular disease. Here, we review the current knowledge of EPCs in cerebral neovascularization and tissue regeneration after cerebral ischemia and the factors associated with their regenerative function to better understand the underlying mechanisms and provide more effective strategies for the use of EPCs in treating ischemic stroke.
Journal Article
Improvement of Neutral Lipid and Polyunsaturated Fatty Acid Biosynthesis by Overexpressing a Type 2 Diacylglycerol Acyltransferase in Marine Diatom Phaeodactylum tricornutum
by
Yang, Wei-Dong
,
Bai, Wei-Bin
,
Zhang, Meng-Han
in
Acid production
,
Amino Acid Sequence
,
Bioactive compounds
2013
Microalgae have been emerging as an important source for the production of bioactive compounds. Marine diatoms can store high amounts of lipid and grow quite quickly. However, the genetic and biochemical characteristics of fatty acid biosynthesis in diatoms remain unclear. Glycerophospholipids are integral as structural and functional components of cellular membranes, as well as precursors of various lipid mediators. In addition, diacylglycerol acyltransferase (DGAT) is a key enzyme that catalyzes the last step of triacylglyceride (TAG) biosynthesis. However, a comprehensive sequence-structure and functional analysis of DGAT in diatoms is lacking. In this study, an isoform of diacylglycerol acyltransferase type 2 of the marine diatom Phaeodactylum tricornutum was characterized. Surprisingly, DGAT2 overexpression in P. tricornutum stimulated more oil bodies, and the neutral lipid content increased by 35%. The fatty acid composition showed a significant increase in the proportion of polyunsaturated fatty acids; in particular, EPA was increased by 76.2%. Moreover, the growth rate of transgenic microalgae remained similar, thereby maintaining a high biomass. Our results suggest that increased DGAT2 expression could alter fatty acid profile in the diatom, and the results thus represent a valuable strategy for polyunsaturated fatty acid production by genetic manipulation.
Journal Article
Systematic dissection of genomic features determining the vast diversity of conotoxins
by
Yang, Yu-Feng
,
Guan, Yuanfang
,
Wang, Xiang
in
Analysis
,
Animal Genetics and Genomics
,
Attention
2023
Background
Conus
, a highly diverse species of venomous predators, has attracted significant attention in neuroscience and new drug development due to their rich collection of neuroactive peptides called conotoxins. Recent advancements in transcriptome, proteome, and genome analyses have facilitated the identification of conotoxins within
Conus
’ venom glands, providing insights into the genetic features and evolutionary patterns of conotoxin genes. However, the underlying mechanism behind the extraordinary hypervariability of conotoxins remains largely unknown.
Results
We analyzed the transcriptomes of 34
Conus
species, examining various tissues such as the venom duct, venom bulb, and salivary gland, leading to the identification of conotoxin genes. Genetic variation analysis revealed that a subset of these genes (15.78% of the total) in
Conus
species underwent positive selection (Ka/Ks > 1,
p
< 0.01). Additionally, we reassembled and annotated the genome of
C. betulinus
, uncovering 221 conotoxin-encoding genes. These genes primarily consisted of three exons, with a significant portion showing high transcriptional activity in the venom ducts. Importantly, the flanking regions and adjacent introns of conotoxin genes exhibited a higher prevalence of transposon elements, suggesting their potential contribution to the extensive variability observed in conotoxins. Furthermore, we detected genome duplication in
C. betulinus
, which likely contributed to the expansion of conotoxin gene numbers. Interestingly, our study also provided evidence of introgression among
Conus
species, indicating that interspecies hybridization may have played a role in shaping the evolution of diverse conotoxin genes.
Conclusions
This study highlights the impact of adaptive evolution and introgressive hybridization on the genetic diversity of conotoxin genes and the evolution of
Conus
. We also propose a hypothesis suggesting that transposable elements might significantly contribute to the remarkable diversity observed in conotoxins. These findings not only enhance our understanding of peptide genetic diversity but also present a novel approach for peptide bioengineering.
Journal Article
Association of p53 with Neurodegeneration in Parkinson’s Disease
2022
p53 is a vital transcriptional protein implicated in regulating diverse cellular processes, including cell cycle arrest, DNA repair, mitochondrial metabolism, redox homeostasis, autophagy, senescence, and apoptosis. Recent studies have revealed that p53 levels and activity are substantially increased in affected neurons in cellular and animal models of Parkinson’s disease (PD) as well as in the brains of PD patients. p53 activation in response to neurodegenerative stress is closely associated with the degeneration of dopaminergic neurons accompanied by mitochondrial dysfunction, reactive oxygen species (ROS) production, abnormal protein aggregation, and impairment of autophagy, and these pathogenic events have been implicated in the pathogenesis of PD. Pathogenic p53 integrates diverse cellular stresses and activate these downstream events to induce the degeneration of dopaminergic neurons; thus, it plays a crucial role in the pathogenesis of PD and appears to be a potential target for the treatment of the disease. We reviewed the current knowledge concerning p53-dependent neurodegeneration to better understand the underlying mechanisms and provide possible strategies for PD treatment by targeting p53.
Journal Article