Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
99 result(s) for "Li, Fanping"
Sort by:
M2 tumor-associated macrophage mediates the maintenance of stemness to promote cisplatin resistance by secreting TGF-β1 in esophageal squamous cell carcinoma
Background Esophageal squamous cell carcinoma (ESCC) is a deadly gastrointestinal malignancy, and chemotherapy resistance is a key factor leading to its poor prognosis. M2 tumor-associated macrophages (M2-TAMs) may be an important cause of chemoresistance in ESCC, but its exact mechanism is still unclear. Methods In order to study the role of M2-TAMs in ESCC chemoresistance, CCK-8, clone formation assay, flow cytometric apoptosis assay, qRT-PCR, western blotting, and serum-free sphere formation assays were used. In vivo animal experiments and human ESCC tissues were used to confirm the findings. Results In vitro and in vivo animal experiments, M2-TAMs reduced the sensitivity of ESCC cells to cisplatin. Mechanistically, M2-TAMs highly secreted TGF-β1 which activated the TGFβR1-smad2/3 pathway to promote and maintain the stemness characteristic of ESCC cells, which could inhibit the sensitivity to cisplatin. Using TGFβ signaling inhibitor SB431542 or knockdown of TGFβR1 could reverse the cisplatin resistance of ESCC cells. In 92 cases of human ESCC tissues, individuals with a high density of M2-TAMs had considerably higher levels of TGF-β1. These patients also had worse prognoses and richer stemness markers. Conclusion TGF-β1 secreted from M2-TAMs promoted and maintained the stemness characteristic to induce cisplatin resistance in ESCC by activating the TGFβ1-Smad2/3 pathway.
Self-Reported Compliance With Personal Preventive Measures Among Chinese Factory Workers at the Beginning of Work Resumption Following the COVID-19 Outbreak: Cross-Sectional Survey Study
Maintaining compliance with personal preventive measures is important to achieve a balance of COVID-19 pandemic control and work resumption. The aim of this study was to investigate self-reported compliance with four personal measures to prevent COVID-19 among a sample of factory workers in Shenzhen, China, at the beginning of work resumption in China following the COVID-19 outbreak. These preventive measures included consistent wearing of face masks in public spaces (the workplace and other public settings); sanitizing hands using soap, liquid soap, or alcohol-based hand sanitizer after returning from public spaces or touching public installations and equipment; avoiding social and meal gatherings; and avoiding crowded places. The participants were adult factory workers who had resumed work in Shenzhen, China. A stratified two-stage cluster sampling design was used. We randomly selected 14 factories that had resumed work. All full-time employees aged ≥18 years who had resumed work in these factories were invited to complete a web-based survey. Out of 4158 workers who had resumed work in these factories, 3035 (73.0%) completed the web-based survey from March 1 to 14, 2020. Multilevel logistic regression models were fitted. Among the 3035 participants, 2938 (96.8%) and 2996 (98.7%) reported always wearing a face mask in the workplace and in other public settings, respectively, in the past month. However, frequencies of self-reported sanitizing hands (2152/3035, 70.9%), avoiding social and meal gatherings (2225/3035, 73.3%), and avoiding crowded places (1997/3035, 65.8%) were relatively low. At the individual level, knowledge about COVID-19 (adjusted odds ratios [AORs] from 1.16, CI 1.10-1.24, to 1.29, CI 1.21-1.37), perceived risk (AORs from 0.58, CI 0.50-0.68, to 0.85, CI 0.72-0.99) and severity (AOR 1.05, CI 1.01-1.09, and AOR 1.07, CI 1.03-1.11) of COVID-19, perceived effectiveness of preventive measures by the individual (AORs from 1.05, CI 1.00-1.10, to 1.09, CI 1.04-1.13), organization (AOR 1.30, CI 1.20-1.41), and government (AORs from 1.14, CI 1.04-1.25, to 1.21, CI 1.02-1.42), perceived preparedness for a potential outbreak after work resumption (AORs from 1.10, CI 1.00-1.21, to 1.50, CI 1.36-1.64), and depressive symptoms (AORs from 0.93, CI 0.91-0.94, to 0.96, CI 0.92-0.99) were associated with self-reported compliance with at least one personal preventive measure. At the interpersonal level, exposure to COVID-19-specific information through official media channels (AOR 1.08, CI 1.04-1.11) and face-to-face communication (AOR 0.90, CI 0.83-0.98) were associated with self-reported sanitizing of hands. The number of preventive measures implemented in the workplace was positively associated with self-reported compliance with all four preventive measures (AORs from 1.30, CI 1.08-1.57, to 1.63, CI 1.45-1.84). Measures are needed to strengthen hand hygiene and physical distancing among factory workers to reduce transmission following work resumption. Future programs in workplaces should address these factors at multiple levels.
M2 tumor-associated macrophage mediates the maintenance of stemness to promote cisplatin resistance by secreting TGF-beta1 in esophageal squamous cell carcinoma
Esophageal squamous cell carcinoma (ESCC) is a deadly gastrointestinal malignancy, and chemotherapy resistance is a key factor leading to its poor prognosis. M2 tumor-associated macrophages (M2-TAMs) may be an important cause of chemoresistance in ESCC, but its exact mechanism is still unclear. In order to study the role of M2-TAMs in ESCC chemoresistance, CCK-8, clone formation assay, flow cytometric apoptosis assay, qRT-PCR, western blotting, and serum-free sphere formation assays were used. In vivo animal experiments and human ESCC tissues were used to confirm the findings. In vitro and in vivo animal experiments, M2-TAMs reduced the sensitivity of ESCC cells to cisplatin. Mechanistically, M2-TAMs highly secreted TGF-[beta]1 which activated the TGF[beta]R1-smad2/3 pathway to promote and maintain the stemness characteristic of ESCC cells, which could inhibit the sensitivity to cisplatin. Using TGF[beta] signaling inhibitor SB431542 or knockdown of TGF[beta]R1 could reverse the cisplatin resistance of ESCC cells. In 92 cases of human ESCC tissues, individuals with a high density of M2-TAMs had considerably higher levels of TGF-[beta]1. These patients also had worse prognoses and richer stemness markers. TGF-[beta]1 secreted from M2-TAMs promoted and maintained the stemness characteristic to induce cisplatin resistance in ESCC by activating the TGF[beta]1-Smad2/3 pathway.
Fusion protein of single-chain variable domain fragments for treatment of myasthenia gravis
Single-chain variable domain fragment (scFv) 637 is an antigen-specific scFv of myasthenia gravis. In this study, scFv and human serum albumin genes were conjugated and the fusion pro-tein was expressed in Pichia pastoris. The afifnity of scFv-human serum albumin fusion protein to bind to acetylcholine receptor at the neuromuscular junction of human intercostal muscles was detected by immunolfuorescence staining. The ability of the fusion protein to block myas-thenia gravis patient sera binding to acetylcholine receptors and its stability in healthy serum were measured by competitive ELISA. The results showed that the inhibition rate was 2.0-77.4%, and the stability of fusion protein in static healthy sera was about 3 days. This approach suggests the scFv-human serum albumin is a potential candidate for speciifc immunosuppressive therapy of myasthenia gravis.
Journey of a Goddess
This book offers the first translation into English of the Chinese novel Haiyouji , as well as excerpts of a marionette play based on the cult lore of the goddess Chen Jinggu (766-790), a historical shaman priestess who became one of Fujian's most important goddesses and the Lüshan Sect's chief deity. The novel, a 1753 reprint of what is possibly a Ming dynasty novel, was both a popular fiction and a religious tract. It offers a lively mythological tale depicting combat between the shaman goddess and a snake demon goddess. Replete with the beliefs and practices of the cult of this warrior goddess, the novel asserts the importance of Shamanism (i.e., local religious beliefs) as one of the four religions of China, along with Confucianism, Buddhism, and Daoism. To further develop the links between literature and local religion, Fan Pen Li Chen includes translations of two acts from a Fujian marionette play, Biography of the Lady , featuring the goddess.
Effect of human umbilical cord-derived mesenchymal stem cells on lung damage in severe COVID-19 patients: a randomized, double-blind, placebo-controlled phase 2 trial
Treatment of severe Coronavirus Disease 2019 (COVID-19) is challenging. We performed a phase 2 trial to assess the efficacy and safety of human umbilical cord-mesenchymal stem cells (UC-MSCs) to treat severe COVID-19 patients with lung damage, based on our phase 1 data. In this randomized, double-blind, and placebo-controlled trial, we recruited 101 severe COVID-19 patients with lung damage. They were randomly assigned at a 2:1 ratio to receive either UC-MSCs (4 × 10 7 cells per infusion) or placebo on day 0, 3, and 6. The primary endpoint was an altered proportion of whole lung lesion volumes from baseline to day 28. Other imaging outcomes, 6-minute walk test (6-MWT), maximum vital capacity, diffusing capacity, and adverse events were recorded and analyzed. In all, 100 COVID-19 patients were finally received either UC-MSCs ( n  = 65) or placebo ( n  = 35). UC-MSCs administration exerted numerical improvement in whole lung lesion volume from baseline to day 28 compared with the placebo (the median difference was −13.31%, 95% CI −29.14%, 2.13%, P  = 0.080). UC-MSCs significantly reduced the proportions of solid component lesion volume compared with the placebo (median difference: −15.45%; 95% CI −30.82%, −0.39%; P  = 0.043). The 6-MWT showed an increased distance in patients treated with UC-MSCs (difference: 27.00 m; 95% CI 0.00, 57.00; P  = 0.057). The incidence of adverse events was similar in the two groups. These results suggest that UC-MSCs treatment is a safe and potentially effective therapeutic approach for COVID-19 patients with lung damage. A phase 3 trial is required to evaluate effects on reducing mortality and preventing long-term pulmonary disability. (Funded by The National Key R&D Program of China and others. ClinicalTrials.gov number, NCT04288102.
Performance of different extraction methods for paralytic shellfish toxins and toxin stability in shellfish during storage
Accurate analysis of paralytic shellfish toxins (PSTs) in shellfish is important to protect seafood safety and human health. In this study, the performance of different extraction protocols for PSTs from scallop tissues is compared and discussed, including regular extraction solvents hydrochloric acid (HCl) and acetic acid (AcOH) followed by heating and solid-phase extraction (SPE) purification, and a novel technique of matrix solid-phase dispersion (MSPD) without heating. The possible conversion of C1/2 and GTX2/3 standards after heating, and the stability of PSTs in wet scallop tissues stored at −20 °C for a 6-month period are also explored. Results showed that the MSPD technique could effectively mitigate matrix interference, but its recoveries of PSTs were significantly lower than those of the HCl and AcOH extraction methods followed by carbon SPE purification. The molar concentrations of M-toxins obtained by the MSPD method were generally lower than those analyzed by the HCl and AcOH extraction methods, which demonstrated a weak chemical conversion of C1/2 and GTX2/3 due to the heating process. Most of the PSTs were relatively stable in scallop tissues during 1-month storage at −20 °C, while the concentrations of PSTs in scallop tissues obviously changed after 6 months due to the degradation and transformation of PSTs during long-term storage at −20 °C. This work helps improve our understanding of the performance of different extraction methods and the stability of PSTs in scallop tissues stored at −20 °C.
A 13-million turnover-number anionic Ir-catalyst for a selective industrial route to chiral nicotine
Developing catalysts with both useful enantioselectivities and million turnover numbers (TONs) for asymmetric hydrogenation of ketones is attractive for industrial production of high-value bioactive chiral entities but remains a challenging. Herein , we report an ultra-efficient anionic Ir-catalyst integrated with the concept of multidentate ligation for asymmetric hydrogenation of ketones. Biocatalysis-like efficacy of up to 99% ee (enantiomeric excess), 13,425,000 TON (turnover number) and 224 s −1 TOF (turnover frequency) were documented for benchmark acetophenone. Up to 1,000,000 TON and 99% ee were achieved for challenging pyridyl alkyl ketone where at most 10,000 TONs are previously reported. The anionic Ir-catalyst showed a novel preferred ONa/MH instead of NNa/MH bifunctional mechanism. A selective industrial route to enantiopure nicotine has been established using this anionic Ir-catalyst for the key asymmetric hydrogenation step at 500 kg batch scale, providing 40 tons scale of product. The development of catalysts for practical asymmetric hydrogenation of ketones remains an important goal of synthetic organic chemistry. Here, an anionic iridium catalyst with excellent activity is reported and used in a hundred-kilogram-scale reduction as part of a route to chiral nicotine.
Human umbilical cord-derived mesenchymal stem cell therapy in patients with COVID-19: a phase 1 clinical trial
No effective drug treatments are available for coronavirus disease 2019 (COVID-19). Host-directed therapies targeting the underlying aberrant immune responses leading to pulmonary tissue damage, death, or long-term functional disability in survivors require clinical evaluation. We performed a parallel assigned controlled, non-randomized, phase 1 clinical trial to evaluate the safety of human umbilical cord-derived mesenchymal stem cells (UC-MSCs) infusions in the treatment of patients with moderate and severe COVID-19 pulmonary disease. The study enrolled 18 hospitalized patients with COVID-19 (n = 9 for each group). The treatment group received three cycles of intravenous infusion of UC-MSCs (3 × 107 cells per infusion) on days 0, 3, and 6. Both groups received standard COVID-treatment regimens. Adverse events, duration of clinical symptoms, laboratory parameters, length of hospitalization, serial chest computed tomography (CT) images, the PaO2/FiO2 ratio, dynamics of cytokines, and IgG and IgM anti-SARS-CoV-2 antibodies were analyzed. No serious UC-MSCs infusion-associated adverse events were observed. Two patients receiving UC-MSCs developed transient facial flushing and fever, and one patient developed transient hypoxia at 12 h post UC-MSCs transfusion. Mechanical ventilation was required in one patient in the treatment group compared with four in the control group. All patients recovered and were discharged. Our data show that intravenous UC-MSCs infusion in patients with moderate and severe COVID-19 is safe and well tolerated. Phase 2/3 randomized, controlled, double-blinded trials with long-term follow-up are needed to evaluate the therapeutic use of UC-MSCs to reduce deaths and improve long-term treatment outcomes in patients with serious COVID-19.
CYP3A4-mediated metabolism of artemisinin to 10β-hydroxyartemisinin with comparable anti-malarial potency
Background The most widely used anti-malarial drug artemisinin (ART) is metabolized extensively, but the therapeutic capacity of its major metabolite remains unknown. Whether the major metabolite of ART (ART-M) contributes to its antiplasmodial potency was investigated in this study. Methods The metabolite identification and enzyme phenotyping of ART were performed using human liver microsomes (HLMs). The stereostructure of the major metabolite ART-M was elucidated by spectroscopic and X-ray crystallographic analysis. The anti-malarial activity of ART-M against two reference Plasmodium strains ( Pf 3D7 and Pf Dd2) was evaluated. The pharmacokinetic profiles of ART and its metabolite ART-M were investigated in healthy Chinese subjects after a recommended two-day oral dose of ART plus piperaquine. Pharmacodynamic parameters based on minimum inhibitory concentration (MIC 50 ) and free plasma concentration were employed to evaluate the therapeutic potency of ART-M, including f AUC 0-t /MIC 50 , f C max /MIC 50 and T > MIC 50 . Results A major metabolite 10β-hydroxyartemisinin (ART-M) was found for ART in human, and CYP3A4/3A5 was the major enzymes responsible for ART 10β-hydroxylation. Compared with ART (MIC 50 , 10.1 nM against Pf 3D7), weaker antiplasmodial activity was found for ART-M (MIC 50 , 61.4 nM against Pf 3D7). However, a 3.5-fold higher maximal free plasma concentration was achieved for ART-M ( f C max , 180.0 nM vs. 51.8 nM for ART). ART-M displayed comparable antiplasmodial potency to ART, in terms of f AUC 0-t /MIC 50 (12.5 h), f C max /MIC 50 (2.8) and T > MIC 50 (5 h). Conclusions The major metabolite 10β-hydroxyartemisinin contributes to the antiplasmodial efficacy of ART, which should be considered when evaluation of ART dosing regimens and/or clinical outcomes.