Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
300 result(s) for "Li, Haiqiang"
Sort by:
Erosion reduces soil microbial diversity, network complexity and multifunctionality
While soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our ability to assess the true impact of erosion on soil ecosystem services and our ability to restore eroded environments. Here we examined the effect of erosion on microbial communities at two sites with contrasting soil texture and climates. Eroded plots had lower microbial network complexity, fewer microbial taxa, and fewer associations among microbial taxa, relative to non-eroded plots. Soil erosion also shifted microbial community composition, with decreased relative abundances of dominant phyla such as Proteobacteria, Bacteroidetes, and Gemmatimonadetes. In contrast, erosion led to an increase in the relative abundances of some bacterial families involved in N cycling, such as Acetobacteraceae and Beijerinckiaceae. Changes in microbiota characteristics were strongly related with erosion-induced changes in soil multifunctionality. Together, these results demonstrate that soil erosion has a significant negative impact on soil microbial diversity and functionality.
Genetic diversity and population structure of the natural population of Helicoverpa armigera in Northwest China using Genotyping by Sequencing (GBS) technology
Characterizing the genetic diversity and population structure can determine whether there is gene flow of the natural population of Helicoverpa armigera (Hübner) under disparate climate and habitat conditions in Northwest China. In this paper, H. armigera was genotyped in various regions of Xinjiang using Genotyping-by-Sequencing (GBS). The samples were compared using the single nucleotide polymorphism (SNP) and insertion deletion (InDel) marker data. The SNPs were used to analyze the population structure and five subgroups were obtained, which was further confirmed by principal component analysis (PCA). The phylogenetic tree identified five cluster populations of H. armigera . The average values of polymorphic information content (PIC) and genetic differentiation index (Fst) are 0.1783 and 0.1293, respectively, which are at a high level. The phylogenetic tree differentiation also indicates that the genetic diversity of cotton bollworm populations in different regions of Xinjiang is low diversity, moderate differentiation, and widespread gene flow. According to correlation analysis of the source of feeding on host plants (Bt cotton and non Bt crops) of H. armigera, seven SNPs with significant differences were obtained. The most significant SNP sequence was compared with the whole genome of H. armigera , and 10 candidate genes were screened. Whether the candidate genes function are related to Bt resistance needs further verification. This study can provide scientific basis for screening Bt resistance genes and formulating refuge strategy of H. armigera in Northwest China.
Aphid parasitism and parasitoid diversity in cotton fields in Xinjiang, China
Aphids are major pests of cotton crops in the Xinjiang Uygur Autonomous Region in China, and parasitoids are considered as important natural enemies in regulating aphid populations. However, information on aphid parasitoids in the Xinjiang cotton fields is limited, which hinders the study of aphid-parasitoid interactions and the application of conservation biological control against cotton aphids. In this study, a 3-year survey was conducted in a large geographical range that included three primary cotton planting areas in southern and northern Xinjiang. The population dynamics and the parasitism levels of an assemblage of aphids in the cotton fields were investigated along with the composition of the parasitoid community associated with these aphids. Aphid parasitization varied significantly within both years and seasons, with parasitism levels ranging from 0 to 26%, indicating that there is less effective biological control of parasitoids on aphids under field conditions. Among the primary parasitoids described, Binodoxys communis (Gahan) constituted 95.19% of the parasitoid species, followed by Praon barbatum Mackauer (3.15%), Trioxys asiaticus Telenga (1.01%) and Lysiphlebus fabarum Marshall (0.65%). Significant differences were found in the composition of the primary parasitoid species between the cotton seedling period (June) and the flowering period (July-August), and two more primary aphid parasitoids were found in the seedling period. Twelve hyperparasitoid species belonging to six genera were found in our study, of which Pachyneuron aphidis (Bouché), Syrphophagus species and Dendrocerus laticeps (Hedicke) were the dominant species. The composition of the hyperparasitoid community also differed significantly between the seedling and the flowering periods. The description of this parasitoid community-associated assemblage of aphids in cotton fields will facilitate the study of aphid-parasitoid interactions and promote the development of effective cotton aphid management strategies in Xinjiang.
Co-ECL: Covariant Network with Equivariant Contrastive Learning for Oriented Object Detection in Remote Sensing Images
Contrastive learning allows us to learn general features for downstream tasks without the need for labeled data by leveraging intrinsic signals within remote sensing images. Existing contrastive learning methods encourage invariant feature learning by bringing positive samples defined by random transformations in feature spaces closer, where transformed samples of the same image at different intensities are considered equivalent. However, remote sensing images differ from natural images in their top-down perspective results in the arbitrary orientation of objects and in that the images contain rich in-plane rotation information. Maintaining invariance to rotation transformations can lead to the loss of rotation information in features, thereby affecting angle information predictions for differently rotated samples in downstream tasks. Therefore, we believe that contrastive learning should not focus only on strict invariance but encourage features to be equivariant to rotation while maintaining invariance to other transformations. To achieve this goal, we propose an invariant–equivariant covariant network (Co-ECL) based on collaborative and reverse mechanisms. The collaborative mechanism encourages rotation equivariance by predicting the rotation transformations of input images and combines invariant and equivariant learning tasks to jointly supervise the feature learning process to achieve collaborative learning. The reverse mechanism introduces a reverse rotation module in the feature learning stage, applying reverse rotation transformations with equal intensity to features in invariant learning tasks as in the data transformation stage, thereby ensuring their independent realization. In experiments conducted on three publicly available oriented object detection datasets of remote sensing images, our method consistently demonstrated the best performance. Additionally, these experiments on multi-angle datasets demonstrated that our method has good robustness on rotation-related tasks.
Immunological response enhancement in cows with subclinical mastitis fed diet supplemented with Macleaya cordata
The present study explored the immune response, milk production and health status of mastitis-infected lactating cows fed diets supplemented with Macleaya cordata extract. Twenty-four Holstein and Jersey cows were equally assigned to two experimental groups: the first group was fed a control diet (control), and the second experimental group was fed a control diet plus Macleaya extract at 8 g/head/d (Macleaya). The experiment was conducted for 60 days. The daily milk yield was recorded, and the milk samples were analyzed for total solids, fat, protein, and lactose contents. Blood samples were analyzed for different blood constituents, biochemical parameters, antioxidant capacity and immune indices. Compared with the control, the addition of Macleaya improved immune indices ( < 0.05). No significant differences ( > 0.05) were recorded between the two groups for different rumen liquor parameters, antioxidant capacities, milk yields or compositions. However, supplementing the diet with Macleaya significantly decreased SCC, SAA, and endotoxin. This study suggested that supplementing the diets of lactating cows with Macleaya extract potentially improved their immune competence without adversely impacting their productive performance.
Effect of Magnetized Brackish Water Drip Irrigation on Water and Salt Transport Characteristics of Sandy Soil in Southern Xinjiang, China
Xinjiang is short on freshwater resources and rich in ones. The unregulated use of brackish water for agriculture leads to the aggravation of secondary salinization in soil; however, magnetization can improve the quality of brackish water. To evaluate the effects of magnetized brackish water drip irrigation on the water and salt transport characteristics of sandy soil in southern Xinjiang, China, a field plot experiment was carried out in which irrigation water was treated using one or two water magnetization events at different magnetization intensities. Water was treated at five magnetization intensities: 1000, 2000, 3000, 4000, or 5000 Gs, while unmagnetized water was used as the control. The results showed that the magnetization of brackish water used in drip irrigation decreased the water transport rate and increased the water holding capacity of the root layer soil. Magnetized irrigation water enhanced the leaching of soil salt and reduced the rate of salt accumulation. Compared with the control, the salt content of the magnetized water-irrigated soil decreased by 15.0%~33.7%, and the salt storage in the magnetized water-irrigated soil decreased by 44.99%~86.78%. The lowest rate of salt accumulation (4.96%) was observed at a magnetization intensity of 3000 Gs. Magnetized water irrigation changed the composition and proportions of soil ions, and Na+, Cl−, and SO42− leaching from the soil increased. The effect of magnetizing the irrigation water twice was greater than that of one magnetization event. Magnetizing the water twice at an intensity of 3000 Gs led to the largest decrease in the relative percentage contents of Na+ and Cl−, which were 80.90% and 82.36%, respectively. The magnetization intensity had a significant effect on the soil carbon and nitrogen contents, which showed a trend of first increasing and then decreasing as the magnetization intensity rose. The total carbon content after irrigation with magnetized water increased by 13.48%~63.35%, and the total nitrogen content increased by 11.73%~147.96%. The magnetization treatment of irrigation water can therefore reduce the risk of soil salinization and reduce salinity stress on crops in arid regions, providing a new method for alleviating the shortage of freshwater resources in Xinjiang and a means to use brackish water safely while improving salinized soil.
Transgenic Cry1Ac cotton does not affect the development and fecundity of Chrysoperla carnea
The development and fecundity of the predator Chrysoperla carnea Stephens (Neuroptera: Chrysopidae) were assessed by feeding Aphis gossypii Glover (Hemiptera: Aphididae) that had been reared on transgenic Bacillus thuringiensis (Bt) cotton SGK321 and a non-Bt cotton control (SY321) for two successive generations. We found no significant differences in the developmental stage duration, stage survival, or egg hatch rate between C. carnea fed A. gossypii reared on the Bt and non-Bt cotton. The fecundity per female over a 25-day observation period was very similar between treatments; for C. carnea fed A. gossypii reared on SGK321 vs. SY321, the amount of eggs laid was not significantly different in both generations. Furthermore, a population dynamics of A. gossypii and lacewing (mainly C. carnea) were highly similar in the SGK321 and SY321 treatments during 2016-2017. These results suggest that Bt cotton does not have a significantly negative or positive effect on C. carnea in terms of development, survival, fecundity, or population dynamics.
The Impact of Long-Term Mulched Drip Irrigation on Soil Particle Composition and Salinity in Arid Northwest China
The evaluation of soil particle composition and salt dynamics is essential for promoting the sustainable development of oasis agriculture in arid regions under long-term mulched drip irrigation (MDI). In this study, we employed the space-for-time substitution method to investigate the long-term effects of MDI on soil particle composition and salinity. Additionally, seven fields, with MDI durations ranging from 0 to 16 years, were selected to represent the primary successional sequence though time in Northwest China. Soil samples were collected from three soil depths (0–30 cm, 30–60 cm, and 60–100 cm) and then analyzed in the laboratory for soil particle composition and salt content. Our findings demonstrated that influenced by the depth of mechanical cultivation and the maximum wetting front depth, the long-term application of MDI significantly altered both the structure of soil layers and the composition of soil particles after 8 years. Soil sand content and soil salinity gradually decreased, whereas the content of soil silt and clay increased with increasing MDI duration throughout 0–100 cm soil depth. Furthermore, the rates of soil desalination stabilized after 10 years of MDI application, with desalination levels exceeding 90% in the 0–100 cm soil layer. Additionally, the soil mass fractal dimension (Dm) exhibited an upward trend across 0–100 cm soil depth. The changes in soil particle composition indirectly influenced the variations in Dm and salt content. Our study demonstrated that long-term application of MDI effectively mitigated soil salinity, changed soil structure, and ultimately enhanced soil quality and cotton yield.
The six whole mitochondrial genomes for the Diaporthe species: features, evolution and phylogeny
In this study, the complete mitogenomes of three Diaporthe species ( Diaporthe eres ZM79-3, D. phaseolorum ZM33-4 and Diaporthe sp. ZM41-5) were sequenced, assembled and compared with the other three previously sequenced Diaporthe mitogenomes ( D. caulivora VNIIKR SE Dcaul3, D. longicolla MSPL 10-6 and D. sojae VNIIKR SE Dps12). The six Diaporthe mitogenomes were found to be circular DNA molecules, with lengths ranging from 53,646 bp to 108,865 bp. The mitogenomes of the six Diaporthe species mainly comprised the same set of 15 core protein-coding genes (PCGs), two rRNAs, and a certain number of tRNAs and unidentified open reading frames (ORFs). The PCG length, AT skew and GC skew showed large variability among the 15 PCGs in the six mitogenomes. The nad1 gene had the least K2P genetic distance of the 15 core PCGs among the 13 Diaporthales species, indicating that this gene was highly conserved. The Ka/Ks values for all 15 core PCGs were < 1, suggesting that these genes were all subject to purifying selection. Comparative mitogenome analysis showed that introns contributed the most to the size variation of Diaporthe mitogenomes. Frequent intron loss/gain events were detected to have occurred in the cox1 gene during the evolution of the Diaporthales mitogenomes. Although the mitogenomes of 13 species from Diaporthales had undergone large-scale gene rearrangements, six mitogenomes of Diaporthe species had identical gene arrangements. Phylogenetic analysis based on combined mitochondrial gene datasets showed that the six Diaporthe species formed well-supported topologies. To our knowledge, this study is the first report on the mitogenomes of D. phaseolorum ZM33-4 and Diaporthe sp. ZM41-5, as well as the first comparison of mitogenomes among Diaporthe species. Our findings will further promote investigations of the genetics, evolution and phylogeny of the Diaporthe species.
Behavioral, Physiological, and Molecular Mechanisms Underlying the Adaptation of Helicoverpa armigera to the Fruits of a Marginal Host: Walnut (Juglans regia)
In northwest China, changes in cultivation patterns and the scarcity of preferred hosts have forced Helicoverpa armigera to feed on the marginal host walnut (Juglans regia). However, the mechanisms allowing this adaptation remain poorly understood. Here, we investigated the behavioral, physiological, and molecular mechanisms underlying the local adaptation of this pest to walnut fruits. The green husk and shell generally contained higher levels of phytochemicals than the kernel. Bioassays revealed that the phytochemical-rich green husk and shell were less preferred, reduced larval fitness and growth, and elevated the activity of detoxification enzymes compared to the nutrient-rich kernel, which were further supported by a larger number of upregulated detoxification genes in insects fed green husks or shells based on transcriptome sequencing. Together, these data suggest that P450 genes (LOC110371778) may be crucial to H. armigera adaptation to the phytochemicals of walnuts. Our findings provide significant insight into the adaptation of H. armigera to walnut, an alternative host of lower quality. Meanwhile, our study provides a theoretical basis for managing resistance to H. armigera larvae in walnut trees and is instrumental in developing comprehensive integrated pest management strategies for this pest in walnut orchards and other agricultural systems.