Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
704
result(s) for
"Li, Jensen"
Sort by:
Digitally virtualized atoms for acoustic metamaterials
2020
By designing tailor-made resonance modes with structured atoms, metamaterials allow us to obtain constitutive parameters outside their limited range from natural materials. Nonetheless, tuning the constitutive parameters depends on our ability to modify the physical structure or external circuits attached to the metamaterials, posing a fundamental challenge to the range of tunability in many real-time applications. Here, we propose the concept of virtualized metamaterials on their signal response function to escape the boundary inherent in the physical structure of metamaterials. By replacing the resonating physical structure with a designer mathematical convolution kernel with a fast digital signal processing circuit, we demonstrate a decoupled control of the effective bulk modulus and mass density of acoustic metamaterials on-demand through a software-defined frequency dispersion. Providing freely software-reconfigurable amplitude, center frequency, bandwidth of frequency dispersion, our approach adds an additional dimension to constructing non-reciprocal, non-Hermitian, and topological systems with time-varying capability as potential applications.
Tuning the constitutive parameters of metamaterials in real time depends on the ability to modify the structure or external circuits attached to the metamaterials. Here, the authors propose virtualized metamaterials, allowing the tuning of acoustic parameters on-demand through software-defined frequency dispersion.
Journal Article
Transient non-Hermitian skin effect
by
Gu, Zhongming
,
Li, Jensen
,
Xue, Haoran
in
639/301/119/2792
,
639/766/119/2792
,
639/766/25/3927
2022
The discovery of non-Hermitian skin effect (NHSE) has opened an exciting direction for unveiling unusual physics and phenomena in non-Hermitian system. Despite notable theoretical breakthroughs, actual observation of NHSE’s whole evolvement, however, relies mainly on gain medium to provide amplified mode. It typically impedes the development of simple, robust system. Here, we show that a passive system is fully capable of supporting the observation of the complete evolution picture of NHSE, without the need of any gain medium. With a simple lattice model and acoustic ring resonators, we use complex-frequency excitation to create virtual gain effect, and experimentally demonstrate that exact NHSE can persist in a totally passive system during a quasi-stationary stage. This results in the transient NHSE: passive construction of NHSE in a short time window. Despite the general energy decay, the localization character of skin modes can still be clearly witnessed and successfully exploited. Our findings unveil the importance of excitation in realizing NHSE and paves the way towards studying the peculiar features of non-Hermitian physics with diverse passive platforms.
In this work the authors uncover a transient non-Hermitian skin effect. Using a passive system, they confirm the exact evolution of NHSE by leveraging the complex-frequency excitation. This demonstration can be extended to other non-Hermitian phenomena in various passive systems.
Journal Article
Chiral control of quantum states in non-Hermitian spin–orbit-coupled fermions
2022
Spin–orbit coupling is an essential mechanism underlying quantum phenomena such as the spin Hall effect and topological insulators
1
. It has been widely studied in well-isolated Hermitian systems, but much less is known about the role dissipation plays in spin–orbit-coupled systems
2
. Here we implement dissipative spin–orbit-coupled bands filled with ultracold fermions, and observe parity-time symmetry breaking as a result of the competition between the spin–orbit coupling and dissipation. Tunable dissipation, introduced by state-selective atom loss, enables us to tune the energy gap and close it at the critical dissipation value, the so-called exceptional point
3
. In the vicinity of the critical point, the state evolution exhibits a chiral response, which enables us to tune the spin–orbit coupling and dissipation dynamically, revealing topologically robust chiral spin transfer when the quantum state encircles the exceptional point. This demonstrates that we can explore non-Hermitian topological states with spin–orbit coupling.
Spin–orbit coupling is an important feature of isolated quantum systems, but less is known about how it responds to dissipation. An experiment in a cold atomic gas now shows how these two effects enable topologically robust spin transfer.
Journal Article
Electromagnetic Impurity-Immunity Induced by Parity-Time Symmetry
2018
Impurities usually play an important role in modifying the bulk properties of electronic or electromagnetic materials. In this work, we demonstrate a way to break this discipline and realize the extraordinary physical property of impurity-immunity, which leads to perfect transmission irrespective of embedded impurities of almost any material and shape. This extraordinary property comes from the exceptional points of a pair of parity-time (PT)-symmetric metasurfaces sandwiching a slab of epsilon-near-zero medium. By systematically investigating thePT -symmetric metasurfaces sandwiching a slab of dielectrics or metamaterials, we obtain the two complementary solutions of exceptional points corresponding to perfect transmission. Interestingly, when the permittivity of the slab approaches zero, the two solutions of exceptional points coalesce into one exceptional point. At such a critical point, we find that the original “doping” effect of impurities in epsilon-near-zero media, proposed by Nader Engheta’s group very recently [I. Liberal et al., Science 355, 1058 (2017)], is significantly suppressed. Our work shows that exceptional points can be used to eliminate scattering of impurities in a bulk medium.
Journal Article
Exceptional-point sensing with a quantum interferometer
2023
Recently, multiple studies have suggested that exceptional points (EPs) in lossless nonlinear optical systems can minimize quantum noise arising from the material gain and loss in conventional non-Hermitian systems, offering the possibility of quantum EP sensing. Meanwhile, nonlinear SU(1,1) interferometers have been established as useful in sensing due to their reduced quantum noise. In this work, we demonstrate the existence of EPs in a dual-beam SU(1,1) interferometer with two nonlinear parametric amplifiers. Our analysis of the input-output matrix in terms of joint quadrature amplitudes shows that EPs can be linked to both high signal, through a zero matrix element, and low noise, through noise preservation, in sensing by selecting an appropriate operation gauge of the quadrature amplitudes. Additionally, for a multistage SU(1,1) interferometer, EPs of the overall input-output matrix form multiple bands of high signal-to-noise ratio (SNR) which further separate into two phases indicated by the EPs of the transfer matrix of a repeating unit. Our investigations demonstrate the significance of quantum EPs in quantum interferometer sensing and broaden the operating regimes from diabolical points in some of the conventional SU(1,1) interferometers to EPs while still maintaining a high SNR.
Journal Article
Willis Metamaterial on a Structured Beam
2019
Bianisotropy is common in electromagnetism whenever a cross-coupling between electric and magnetic responses exists. However, the analogous concept for elastic waves in solids, termed as Willis coupling, is more challenging to observe. It requires coupling between stress and velocity or momentum and strain fields, which is difficult to induce in non-negligible levels, even when using metamaterial structures. Here, we report the experimental realization of a Willis metamaterial for flexural waves. Based on a cantilever bending resonance, we demonstrate asymmetric reflection amplitudes and phases due to Willis coupling. We also show that, by introducing loss in the metamaterial, the asymmetric amplitudes can be controlled and can be used to approach an exceptional point of the non-Hermitian system, at which unidirectional zero reflection occurs. The present work extends conventional propagation theory in plates and beams to include Willis coupling and provides new avenues to tailor flexural waves using artificial structures.
Journal Article
Spin-orbit interactions of transverse sound
2021
Spin-orbit interactions (SOIs) endow light with intriguing properties and applications such as photonic spin-Hall effects and spin-dependent vortex generations. However, it is counterintuitive that SOIs can exist for sound, which is a longitudinal wave that carries no intrinsic spin. Here, we theoretically and experimentally demonstrate that airborne sound can possess artificial transversality in an acoustic micropolar metamaterial and thus carry both spin and orbital angular momentum. This enables the realization of acoustic SOIs with rich phenomena beyond those in conventional acoustic systems. We demonstrate that acoustic activity of the metamaterial can induce coupling between the spin and linear crystal momentum
k
, which leads to negative refraction of the transverse sound. In addition, we show that the scattering of the transverse sound by a dipole particle can generate spin-dependent acoustic vortices via the geometric phase effect. The acoustic SOIs can provide new perspectives and functionalities for sound manipulations beyond the conventional scalar degree of freedom and may open an avenue to the development of spin-orbit acoustics.
Spin-orbit acoustics is determinant to provide new perspectives and functionalities for sound manipulations. Here the authors theoretically and experimentally demonstrate acoustic spin-orbit interaction enabling chiral sound-matter interactions with unprecedented applications.
Journal Article
Non-Abelian gauge field optics
2019
The concept of gauge field is a cornerstone of modern physics and the synthetic gauge field has emerged as a new way to manipulate particles in many disciplines. In optics, several schemes of Abelian synthetic gauge fields have been proposed. Here, we introduce a new platform for realizing synthetic SU(2) non-Abelian gauge fields acting on two-dimensional optical waves in a wide class of anisotropic materials and discover novel phenomena. We show that a virtual non-Abelian Lorentz force arising from material anisotropy can induce light beams to travel along Zitterbewegung trajectories even in homogeneous media. We further design an optical non-Abelian Aharonov–Bohm system which results in the exotic spin density interference effect. We can extract the Wilson loop of an arbitrary closed optical path from a series of gauge fixed points in the interference fringes. Our scheme offers a new route to study SU(2) gauge field related physics using optics.
In optics, schemes have been proposed to realize synthetic gauge fields, but are restricted to the Abelian type. Here, the authors demonstrate synthetic SU(2) non-Abelian gauge fields in anisotropic media, which allows the study of novel optical phenomena not found in Abelian synthetic gauge field systems.
Journal Article
Ultra-broadband reflectionless Brewster absorber protected by reciprocity
2021
The Brewster’s law predicts zero reflection of p-polarization on a dielectric surface at a particular angle. However, when loss is introduced into the permittivity of the dielectric, the Brewster condition breaks down and reflection unavoidably appears. In this work, we found an exception to this long-standing dilemma by creating a class of nonmagnetic anisotropic metamaterials, where anomalous Brewster effects with independently tunable absorption and refraction emerge. This loss-independent Brewster effect is bestowed by the extra degrees of freedoms introduced by anisotropy and strictly protected by the reciprocity principle. The bandwidth can cover an extremely wide spectrum from dc to optical frequencies. Two examples of reflectionless Brewster absorbers with different Brewster angles are both demonstrated to achieve large absorbance in a wide spectrum via microwave experiments. Our work extends the scope of Brewster effect to the horizon of nonmagnetic absorptive materials, which promises an unprecedented wide bandwidth for reflectionless absorption with high efficiency.
Journal Article
Flexible coherent control of plasmonic spin-Hall effect
2015
The surface plasmon polariton is an emerging candidate for miniaturizing optoelectronic circuits. Recent demonstrations of polarization-dependent splitting using metasurfaces, including focal-spot shifting and unidirectional propagation, allow us to exploit the spin degree of freedom in plasmonics. However, further progress has been hampered by the inability to generate more complicated and independent surface plasmon profiles for two incident spins, which work coherently together for more flexible and tunable functionalities. Here by matching the geometric phases of the nano-slots on silver to specific superimpositions of the inward and outward surface plasmon profiles for the two spins, arbitrary spin-dependent orbitals can be generated in a slot-free region. Furthermore, motion pictures with a series of picture frames can be assembled and played by varying the linear polarization angle of incident light. This spin-enabled control of orbitals is potentially useful for tip-free near-field scanning microscopy, holographic data storage, tunable plasmonic tweezers, and integrated optical components.
Conventional methods to control surface plasmon polaritons with light offer limited tunability or complex design parameters. Here, Xiao
et al
. demonstrate coherent and independent control of surface plasmon polariton orbitals for two opposite spins using multiple rings of nano-slots on a metasurface
Journal Article