Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
702 result(s) for "Li, Jinghong"
Sort by:
A low-temperature method to produce highly reduced graphene oxide
Chemical reduction of graphene oxide can be used to produce large quantities of reduced graphene oxide for potential application in electronics, optoelectronics, composite materials and energy-storage devices. Here we report a highly efficient one-pot reduction of graphene oxide using a sodium-ammonia solution as the reducing agent. The solvated electrons in sodium-ammonia solution can effectively facilitate the de-oxygenation of graphene oxide and the restoration of π-conjugation to produce reduced graphene oxide samples with an oxygen content of 5.6 wt%. Electrical characterization of single reduced graphene oxide flakes demonstrates a high hole mobility of 123 cm 2  Vs −1 . In addition, we show that the pre-formed graphene oxide thin film can be directly reduced to form reduced graphene oxide film with a combined low sheet resistance (~350 Ω per square with ~80% transmittance). Our study demonstrates a new, low-temperature solution processing approach to high-quality graphene materials with lowest sheet resistance and highest carrier mobility. The chemical reduction of graphene oxide can provide large quantities of reduced graphene oxide for potential application in electronics and composite materials. Feng et al . report a highly efficient low-temperature one-pot reduction of graphene oxide that uses sodium-ammonia solution as the reducing agent.
In situ simultaneous monitoring of ATP and GTP using a graphene oxide nanosheet–based sensing platform in living cells
This approach uses fluorescently labeled aptamers and graphene oxide nanosheets to adsorb the aptamers and quench fluorescence. Ligand (e.g., ATP or GTP) binding results in the release of aptamers into solution and fluorescence is \"turned on\". Here we present a detailed protocol for in situ multiple fluorescence monitoring of adenosine-5′-triphosphate (ATP) and guanosine-5′-triphosphate (GTP) in MCF-7 breast cancer cells by using graphene oxide nanosheet (GO-nS) and DNA/RNA aptamers. FAM-labeled ATP aptamer and Cy5-modified GTP aptamer are used to construct the multiple aptamer/GO-nS sensing platform through 'π-π stacking' between aptamers and GO-nS. Binding of aptamers to GO-nS guarantees the fluorescence resonance energy transfer between fluorophores and GO-nS, resulting in 'fluorescence off'. When the aptamer/GO-nS are transported inside the cells via endocytosis, the conformation of the aptamers will change on interaction with cellular ATP and GTP. On the basis of the fluorescence 'off/on' switching, simultaneous sensing and imaging of ATP and GTP in vitro and in situ have been realized through fluorescence and confocal microscopy techniques. In this protocol, we describe the synthesis of GO and GO-nS, preparation of aptamer/GO-nS platform, in vitro detection of ATP and GTP, and how to use this platform to realize intracellular ATP and GTP imaging in cultured MCF-7 cells. The preparation of GO-nS is anticipated to take 7–14 d, and assays involving microscopy imaging and MCF-7 cells culturing can be performed in 2–3 d.
Graphene and graphene oxide: biofunctionalization and applications in biotechnology
Graphene is the basic building block of 0D fullerene, 1D carbon nanotubes, and 3D graphite. Graphene has a unique planar structure, as well as novel electronic properties, which have attracted great interests from scientists. This review selectively analyzes current advances in the field of graphene bioapplications. In particular, the biofunctionalization of graphene for biological applications, fluorescence-resonance-energy-transfer-based biosensor development by using graphene or graphene-based nanomaterials, and the investigation of graphene or graphene-based nanomaterials for living cell studies are summarized in more detail. Future perspectives and possible challenges in this rapidly developing area are also discussed.
Crosslinking-induced patterning of MOFs by direct photo- and electron-beam lithography
Metal-organic frameworks (MOFs) with diverse chemistry, structures, and properties have emerged as appealing materials for miniaturized solid-state devices. The incorporation of MOF films in these devices, such as the integrated microelectronics and nanophotonics, requires robust patterning methods. However, existing MOF patterning methods suffer from some combinations of limited material adaptability, compromised patterning resolution and scalability, and degraded properties. Here we report a universal, crosslinking-induced patterning approach for various MOFs, termed as CLIP-MOF. Via resist-free, direct photo- and electron-beam (e-beam) lithography, the ligand crosslinking chemistry leads to drastically reduced solubility of colloidal MOFs, permitting selective removal of unexposed MOF films with developer solvents. This enables scalable, micro-/nanoscale (≈70 nm resolution), and multimaterial patterning of MOFs on large-area, rigid or flexible substrates. Patterned MOF films preserve their crystallinity, porosity, and other properties tailored for targeted applications, such as diffractive gas sensors and electrochromic pixels. The combined features of CLIP-MOF create more possibilities in the system-level integration of MOFs in various electronic, photonic, and biomedical devices. Precise and scalable patterning is essential for the use of metal-organic frameworks (MOFs) in solid-state electronics and photonics. Here, the authors report on resistance-free, direct photo- and electron-beam lithography of MOF films using crosslinking chemistry.
Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance
We report on label-free imaging, detection, and mass/size measurement of single viral particles in solution by high-resolution surface plasmon resonance microscopy. Diffraction of propagating plasmon waves along a metal surface by the viral particles creates images of the individual particles, which allow us to detect the binding of the viral particles to surfaces functionalized with and without antibodies. We show that the intensity of the particle image is related to the mass of the particle, from which we determine the mass and mass distribution of influenza viral particles with a mass detection limit of approximately 1 ag (or 0.2 fg/mm²). This work demonstrates a multiplexed method to measure the masses of individual viral particles and to study the binding activity of the viral particles.
Keypoint-Based Robotic Grasp Detection Scheme in Multi-Object Scenes
Robot grasping is an important direction in intelligent robots. However, how to help robots grasp specific objects in multi-object scenes is still a challenging problem. In recent years, due to the powerful feature extraction capabilities of convolutional neural networks (CNN), various algorithms based on convolutional neural networks have been proposed to solve the problem of grasp detection. Different from anchor-based grasp detection algorithms, in this paper, we propose a keypoint-based scheme to solve this problem. We model an object or a grasp as a single point—the center point of its bounding box. The detector uses keypoint estimation to find the center point and regress to all other object attributes such as size, direction, etc. Experimental results demonstrate that the accuracy of this method is 74.3% in the multi-object grasp dataset VMRD, and the performance on the single-object scene Cornell dataset is competitive with the current state-of-the-art grasp detection algorithm. Robot experiments demonstrate that this method can help robots grasp the target in single-object and multi-object scenes with overall success rates of 94% and 87%, respectively.
Neutrophil Delivered Hollow Titania Covered Persistent Luminescent Nanosensitizer for Ultrosound Augmented Chemo/Immuno Glioblastoma Therapy
Glioblastoma (GBM) is the most malignant brain tumor with unmet therapeutic demand. The blood‐brain‐barrier (BBB) and tumor heterogeneity limit the treatment effectiveness of various interventions. Here, an ultrasound augmented chemo/immuno therapy for GBM using a neutrophil‐delivered nanosensitizer, is developed. The sensitizer is composed of a ZnGa2O4:Cr3+ (ZGO) core for persistent luminescence imaging and a hollow sono‐sensitive TiO2 shell to generate reactive oxygen species (ROS) for controlled drug release. Immune checkpoint inhibitor (Anti‐PD‐1 antibody) is trapped in the interior of the porous ZGO@TiO2 with paclitaxel (PTX) loaded liposome encapsulation to form ZGO@TiO2@ALP. Delivered by neutrophils (NEs), ZGO@TiO2@ALP‐NEs can penetrate through BBB for GBM accumulation. After intravenous injection, ultrasound irradiation at GBM sites initiates ROS generation from ZGO@TiO2@ALP, leading to liposome destruction for PTX and anti‐PD‐1 antibody release to kill tumors and induce local inflammation, which in‐turn attractes more ZGO@TiO2@ALP‐NEs to migrate into tumor sites for augmented and sustained therapy. The treatment enhances the survival rate of the GBM bearing mice from 0% to 40% and endows them with long‐term immuno‐surveillance for tumor recurrence, providing a new approach for precision therapy against GBM and other cancers. Delivered by neutrophils (NEs), ZGO@TiO2@ALP‐NEs can penetrate through blood‐brain‐barrier for glioblastoma (GBM) accumulation. Ultrasound irradiation at GBM sites initiates generate reactive oxygen species generation from ZGO@TiO2@ALP, leading to liposome destruction for paclitaxel and anti‐PD‐1 antibody release to kill tumor and induce local inflammation, which in‐turn attracts more ZGO@TiO2@ALP‐NEs for augmented and sustained tumor elimination.
A paper-based assay for the colorimetric detection of SARS-CoV-2 variants at single-nucleotide resolution
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need for versatile diagnostic assays that can discriminate among emerging variants of the virus. Here we report the development and performance benchmarking of an inexpensive (approximately US$0.30 per test) assay for the rapid (sample-to-answer time within 30 min) colorimetric detection of SARS-CoV-2 variants. The assay, which we integrated into foldable paper strips, leverages nucleic acid strand-displacement reactions, the thermodynamic energy penalty associated with single-base-pair mismatches and the metal-ion-controlled enzymatic cleavage of urea to amplify the recognition of viral RNAs for the colorimetric readout of changes in pH via a smartphone. For 50 throat swab samples, the assay simultaneously detected the presence of SARS-CoV-2 and mutations specific to the SARS-CoV-2 variants Alpha, Beta and Gamma, with 100% concordance with real-time quantitative polymerase chain reaction and RNA sequencing. Customizable and inexpensive paper-based assays for the detection of viruses and their variants may facilitate viral surveillance. A paper-based assay leveraging nucleic acid strand-displacement reactions and the enzymatic amplification of the recognition of viral RNA at the single-nucleotide level allows for the rapid colorimetric detection of SARS-CoV-2 variants.
Sieving pore design enables stable and fast alloying chemistry of silicon negative electrodes in Li-ion batteries
Ideal silicon negative electrodes for high-energy lithium-ion batteries are expected to feature high capacity, minimal expansion, long lifespan, and fast charging. Yet, engineered silicon materials face a fundamental paradox associated with particle deformation and charge transfer, which hinders the industrial use of advanced silicon electrode materials. Here we show a sieving-pore design for carbon supports that overcomes these mechano-kinetic limitations to enable stable, fast (de)alloying chemistries of silicon negative electrodes. Such a sieving-pore structure features an inner nanopore body with reserved voids to accommodate high-mass-content silicon deformation and an outer sub-nanopore entrance to induce both pre-desolvation and fast intrapore transport of ions during cycling. Importantly, the sieving effect yields inorganic-rich solid electrolyte interphases to mechanically confine the in-pore silicon, producing a stress-voltage coupling effect that mitigates the formation of detrimental crystalline Li 15 Si 4 . As a result, this design enables low electrode expansion (58% at the specific capacity of 1773 mAh g − 1 and areal capacity of 4 mAh cm − 2 ), high initial/cyclic Coulombic efficiency (93.6%/99.9%), and minimal capacity decay (0.015% per cycle). A practical pouch cell with such a sieving-pore silicon negative electrode delivers 80% capacity retention over 1700 cycles at 2 A as well as a 10-min fast charging capability. Silicon electrodes promise high energy for lithium-ion batteries but face swelling and durability issues. Here, the authors develop a sieving-pore design that enables stable, fast-charging silicon electrodes with long cycle life, low expansion, and industrial-scale potential.
Recent Advances in Electrochemiluminescence Emitters for Biosensing and Imaging of Protein Biomarkers
Electrochemiluminescence (ECL) is a light-emitting process triggered by the high energy redox between electrochemically oxidized and reduced luminophores or some coreactive intermediate radicals, representing a blooming hot topic over decades with a wide variety of bioanalytical applications. Due to the superb sensitivity, ultralow background noise, specificity, ease of integration, and real-time and in situ analysis, ECL has been developed as a convenient and versatile technique for immunodiagnostics, nucleic acid analysis, and bioimaging. Discovering highly-efficient ECL emitters has been a promising subject that will benefit the development of sensitive bioanalytical methods with prominent potential prospects. To date, the interdisciplinary integrations of electrochemistry, spectroscopy, and nanoscience have brought up the continuous emergences of novel nanomaterials which can be flexibly conjugated with specific bio-recognition elements as functional ECL emitters for bioassays. Therefore, a critical overview of recent advances in developing highly-efficient ECL emitters for ultrasensitive detection of protein biomarkers is presented in this review, where six kinds of the most promising ECL nanomaterials for biosensing and imaging of various disease-related protein biomarkers are separately introduced with references to representative works. Finally, this review discusses the ongoing opportunities and challenges of ECL emitters in developing advanced bioassays for single-molecule analysis and spatiotemporally resolved imaging of protein biomarkers with future perspectives.