Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
68
result(s) for
"Li, Manfei"
Sort by:
A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield
2020
Increasing grain yield of maize (
Zea mays
L.) is required to meet the rapidly expanding demands for maize-derived food, feed, and fuel. Breeders have enhanced grain productivity of maize hybrids by pyramiding desirable characteristics for larger ears. However, loci selected for improving grain productivity remain largely unclear. Here, we show that a serine/threonine protein kinase encoding gene
KERNEL NUMBER PER ROW6 (KNR6)
determines pistillate floret number and ear length. Overexpression of
KNR6
or introgression of alleles lacking the insertions of two transposable elements in the regulatory region of
KNR6
can significantly enhance grain yield. Further in vitro evidences indicate that KNR6 can interact with an Arf GTPase-activating protein (AGAP) and its phosphorylation by KNR6 may affect ear length and kernel number. This finding provides knowledge basis to enhance maize hybrids grain yield.
Selection of kernel number per ear has improved maize yield, but the genetic base is unclear. Here, the authors reveal that a serine/threonine protein kinase KNR6 is a positive regulator of the trait and show
in vitro
evidences that KNR6 may function through phosphorylating an Arf GTPase-activating protein.
Journal Article
GRF-interacting factor1 Regulates Shoot Architecture and Meristem Determinacy in Maize
2018
Plant architecture results from a balance of indeterminate and determinate cell fates. Cells with indeterminate fates are located in meristems, comprising groups of pluripotent cells that produce lateral organs. Meristematic cells are also found in intercalary stem tissue, which provides cells for internodes, and at leaf margins to contribute to leaf width. We identified a maize (Zea mays) mutant that has a defect in balancing determinacy and indeterminacy. The mutant has narrow leaves and short internodes, suggesting a reduction in indeterminate cells in the leaf and stem. In contrast, the mutants fail to control indeterminacy in shoot meristems. Inflorescence meristems are fasciated, and determinate axillary meristems become indeterminate. Positional cloning identified growth regulating factor-interacting factor1 (gif1) as the responsible gene. gif1 mRNA accumulates in distinct domains of shoot meristems, consistent with tissues affected by the mutation. We determined which GROWTH REGULATING FACTORs interact with GIF1 and performed RNA-seq analysis. Many genes known to play roles in inflorescence architecture were differentially expressed in gif1. Chromatin immunoprecipitation identified some differentially expressed genes as direct targets of GIF1. The interactions with these diverse direct and indirect targets help explain the paradoxical phenotypes of maize GIF1. These results provide insights into the biological functions of gif1.
Journal Article
UNBRANCHED3 regulates branching by modulating cytokinin biosynthesis and signaling in maize and rice
2017
UNBRANCHED3 (UB3), a member of the SQUAMOSA promoter binding protein-like (SPL) gene family, regulates kernel row number by negatively modulating the size of the inflorescence meristem in maize. However, the regulatory pathway by which UB3 mediates branching remains unknown.
We introduced the UB3 into rice and maize to reveal its effects in the two crop plants, respectively. Furthermore, we performed transcriptome sequencing and protein-DNA binding assay to elucidate the regulatory pathway of UB3.
We found that UB3 could bind and regulate the promoters of LONELY GUY1 (LOG1) and Type-A response regulators (ARRs), which participate in cytokinin biosynthesis and signaling. Overexpression of exogenous UB3 in rice (Oryza sativa) dramatically suppressed tillering and panicle branching as a result of a greater decrease in the amount of active cytokinin. By contrast, moderate expression of UB3 suppressed tillering slightly, but promoted panicle branching by cooperating with SPL genes, resulting in a higher grain number per panicle in rice. In maize (Zea mays) ub3 mutant with an increased kernel row number, UB3 showed a low expression but cytokinin biosynthesis-related genes were up-regulated and degradation-related genes were down-regulated.
These results suggest that UB3 regulates vegetative and reproductive branching by modulating cytokinin biosynthesis and signaling in maize and rice.
Journal Article
UNBRANCHED3 Expression and Inflorescence Development is Mediated by UNBRANCHED2 and the Distal Enhancer, KRN4, in Maize
2020
Enhancers are cis-acting DNA segments with the ability to increase target gene expression. They show high sensitivity to DNase and contain specific DNA elements in an open chromatin state that allows the binding of transcription factors (TFs). While numerous enhancers are annotated in the maize genome, few have been characterized genetically. KERNEL ROW NUMBER4 (KRN4), an intergenic quantitative trait locus for kernel row number, is assumed to be a cis-regulatory element of UNBRANCHED3 (UB3), a key inflorescence gene. However, the mechanism by which KRN4 controls UB3 expression remains unclear. Here, we found that KRN4 exhibits an open chromatin state, harboring sequences that showed high enhancer activity toward the 35S and UB3 promoters. KRN4 is bound by UB2-centered transcription complexes and interacts with the UB3 promoter by three duplex interactions to affect UB3 expression. Sequence variation at KRN4 enhances ub2 and ub3 mutant ear fasciation. Therefore, we suggest that KRN4 functions as a distal enhancer of the UB3 promoter via chromatin interactions and recruitment of UB2-centered transcription complexes for the fine-tuning of UB3 expression in meristems of ear inflorescences. These results provide evidence that an intergenic region helps to finely tune gene expression, providing a new perspective on the genetic control of quantitative traits.
Journal Article
KRN4 Controls Quantitative Variation in Maize Kernel Row Number
2015
Kernel row number (KRN) is an important component of yield during the domestication and improvement of maize and controlled by quantitative trait loci (QTL). Here, we fine-mapped a major KRN QTL, KRN4, which can enhance grain productivity by increasing KRN per ear. We found that a ~3-Kb intergenic region about 60 Kb downstream from the SBP-box gene Unbranched3 (UB3) was responsible for quantitative variation in KRN by regulating the level of UB3 expression. Within the 3-Kb region, the 1.2-Kb Presence-Absence variant was found to be strongly associated with quantitative variation in KRN in diverse maize inbred lines, and our results suggest that this 1.2-Kb transposon-containing insertion is likely responsible for increased KRN. A previously identified A/G SNP (S35, also known as Ser220Asn) in UB3 was also found to be significantly associated with KRN in our association-mapping panel. Although no visible genetic effect of S35 alone could be detected in our linkage mapping population, it was found to genetically interact with the 1.2-Kb PAV to modulate KRN. The KRN4 was under strong selection during maize domestication and the favorable allele for the 1.2-Kb PAV and S35 has been significantly enriched in modern maize improvement process. The favorable haplotype (Hap1) of 1.2-Kb-PAV-S35 was selected during temperate maize improvement, but is still rare in tropical and subtropical maize germplasm. The dissection of the KRN4 locus improves our understanding of the genetic basis of quantitative variation in complex traits in maize.
Journal Article
GIF1 controls ear inflorescence architecture and floral development by regulating key genes in hormone biosynthesis and meristem determinacy in maize
by
Sun, Wei
,
Du, Yanfang
,
Du, Hewei
in
adenosinetriphosphatase
,
Agriculture
,
Biomedical and Life Sciences
2022
Background
Inflorescence architecture and floral development in flowering plants are determined by genetic control of meristem identity, determinacy, and maintenance. The ear inflorescence meristem in maize (
Zea mays
) initiates short branch meristems called spikelet pair meristems, thus unlike the tassel inflorescence, the ears lack long branches. Maize growth-regulating factor (GRF)-interacting factor1 (GIF1) regulates branching and size of meristems in the tassel inflorescence by binding to
Unbranched3
. However, the regulatory pathway of
gif1
in ear meristems is relatively unknown.
Result
In this study, we found that loss-of-function
gif1
mutants had highly branched ears, and these extra branches repeatedly produce more branches and florets with unfused carpels and an indeterminate floral apex. In addition, GIF1 interacted in vivo with nine GRFs, subunits of the SWI/SNF chromatin-remodeling complex, and hormone biosynthesis-related proteins. Furthermore, key meristem-determinacy gene
RAMOSA2
(
RA2
) and CLAVATA signaling-related gene
CLV3/ENDOSPERM SURROUNDING REGION
(
ESR
)
4a
(
CLE4a
) were directly bound and regulated by GIF1 in the ear inflorescence.
Conclusions
Our findings suggest that GIF1 working together with GRFs recruits SWI/SNF chromatin-remodeling ATPases to influence DNA accessibility in the regions that contain genes involved in hormone biosynthesis, meristem identity and determinacy, thus driving the fate of axillary meristems and floral organ primordia in the ear-inflorescence of maize.
Journal Article
The Ruminant Farm Systems Animal Module: A Biophysical Description of Animal Management
by
Vankerhove, Chris J.
,
Hansen, Tayler L.
,
Li, Jinghui
in
Algorithms
,
animal husbandry
,
Animals
2021
Dairy production is an important source of nutrients in the global food supply, but environmental impacts are increasingly a concern of consumers, scientists, and policy-makers. Many decisions must be integrated to support sustainable production—which can be achieved using a simulation model. We provide an example of the Ruminant Farm Systems (RuFaS) model to assess changes in the dairy system related to altered animal feed efficiency. RuFaS is a whole-system farm simulation model that simulates the individual animal life cycle, production, and environmental impacts. We added a stochastic animal-level parameter to represent individual animal feed efficiency as a result of reduced residual feed intake and compared High (intake = 94% of expected) and Very High (intake = 88% of expected) efficiency levels with a Baseline scenario (intake = 100% of expected). As expected, the simulated total feed intake was reduced by 6 and 12% for the High and Very High efficiency scenarios, and the expected impact of these improved efficiencies on the greenhouse gas emissions from enteric methane and manure storage was a decrease of 4.6 and 9.3%, respectively.
Journal Article
The Coordinated KNR6–AGAP–ARF1 Complex Modulates Vegetative and Reproductive Traits by Participating in Vesicle Trafficking in Maize
by
Du, Yanfang
,
Zhao, Ran
,
Shen, Xiaomeng
in
Adenosine
,
ADP-ribosylation factor
,
ADP-ribosylation factor (Arf) GTPase
2021
The KERNEL NUMBER PER ROW6 (KNR6)-mediated phosphorylation of an adenosine diphosphate ribosylation factor (Arf) GTPase-activating protein (AGAP) forms a key regulatory module for the numbers of spikelets and kernels in the ear inflorescences of maize (Zea mays L.). However, the action mechanism of the KNR6–AGAP module remains poorly understood. Here, we characterized the AGAP-recruited complex and its roles in maize cellular physiology and agronomically important traits. AGAP and its two interacting Arf GTPase1 (ARF1) members preferentially localized to the Golgi apparatus. The loss-of-function AGAP mutant produced by CRISPR/Cas9 resulted in defective Golgi apparatus with thin and compact cisternae, together with delayed internalization and repressed vesicle agglomeration, leading to defective inflorescences and roots, and dwarfed plants with small leaves. The weak agap mutant was phenotypically similar to knr6, showing short ears with fewer kernels. AGAP interacted with KNR6, and a double mutant produced shorter inflorescence meristems and mature ears than the single agap and knr6 mutants. We hypothesized that the coordinated KNR6–AGAP–ARF1 complex modulates vegetative and reproductive traits by participating in vesicle trafficking in maize. Our findings provide a novel mechanistic insight into the regulation of inflorescence development, and ear length and kernel number, in maize.
Journal Article
Identification of a candidate gene underlying qKRN5b for kernel row number in Zea mays L
by
Zhu, Can
,
Du, Hewei
,
Shen, Xiaomeng
in
Comparative analysis
,
Endonuclease
,
Environmental factors
2019
Key messageA quantitative trait locus for kernel row number, qKRN5, was dissected into two tightly linked loci, qKRN5a and qKRN5b. Fine mapping, comparative analysis of nucleotide sequences and gene expression established the endonuclease/exonuclease/phosphatase family protein-encoding gene Zm00001d013603 as a causal gene of qKRN5b.Maize grain yield is determined by agronomically important traits that are controlled by interactions among and between genes and environmental factors. Considerable efforts have been made to identify major quantitative trait loci (QTLs) for yield-related traits; however, few were previously isolated and characterized in maize. In this study, we divided a QTL for kernel row number (KRN), qKRN5, into two tightly linked loci, qKRN5a and qKRN5b, using advanced backcross populations derived from near-isogenic lines. KRN was greater in individuals that were homozygous for the NX531 allele, which showed coupling-phase linkage. The major QTL qKRN5b had an additive effect of approximately one kernel row. Furthermore, fine mapping narrowed qKRN5b within a 147.2-kb region. The upstream sequence Zm00001d013603 and its expression in the ear inflorescence showed obvious differences between qKRN5b near-isogenic lines. In situ hybridization located Zm00001d013603 on the primordia of the spikelet pair meristems and spikelet meristems, but not in the inflorescence meristem, which indicates a role in regulating the initiation of reproductive axillary meristems of ear inflorescences. Expression analysis and nucleotide sequence alignment revealed that Zm00001d013603, which encodes an endonuclease/exonuclease/phosphatase family protein that hydrolyzes phosphatidyl inositol diphosphates, is the causal gene of qKRN5b. These results provide insight into the genetic basis of KRN and have potential value for enhancing maize grain yield.
Journal Article
KRN5b regulates maize kernel row number through mediating phosphoinositol signalling
2024
Summary Kernel row number (KRN) is a major yield related trait for maize (Zea mays L.) and is also a major goal of breeders, as it can increase the number of kernels per plant. Thus, identifying new genetic factors involving in KRN formation may accelerate improving yield‐related traits genetically. We herein describe a new kernel number‐related gene (KRN5b) identified from KRN QTL qKRN5b and encoding an inositol polyphosphate 5‐phosphatase (5PTase). KRN5b has phosphatase activity towards PI(4,5)P2, PI(3,4,5)P3, and Ins(1,4,5)P3 in vitro. Knocking out KRN5b caused accumulation of PI(4,5)P2 and Ins(1,4,5)P3, resulting in disordered kernel rows and a decrease in the number of kernels and tassel branches. The introgression of the allele with higher expression abundance into different inbred lines could increase the ear weight of the inbred lines and the corresponding hybrids by 10.1%–12.2% via increasing KRN, with no adverse effects on other agronomic traits. Further analyses showed that KRN5b regulates inflorescence development through affecting the synthesis and distribution of hormones. Together, KRN5b contributes to spikelet pair meristem development through inositol phosphate and phosphatidylinositols, making it a selecting target for yield improvement.
Journal Article