Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
538
result(s) for
"Li, Xiaokai"
Sort by:
A new detection model of microaneurysms based on improved FC-DenseNet
2022
Diabetic retinopathy (DR) is a frequent vascular complication of diabetes mellitus and remains a leading cause of vision loss worldwide. Microaneurysm (MA) is usually the first symptom of DR that leads to blood leakage in the retina. Periodic detection of MAs will facilitate early detection of DR and reduction of vision injury. In this study, we proposed a novel model for the detection of MAs in fluorescein fundus angiography (FFA) images based on the improved FC-DenseNet, MAs-FC-DenseNet. FFA images were pre-processed by the Histogram Stretching and Gaussian Filtering algorithm to improve the quality of FFA images. Then, MA regions were detected by the improved FC-DenseNet. MAs-FC-DenseNet was compared against other FC-DenseNet models (FC-DenseNet56 and FC-DenseNet67) or the end-to-end models (DeeplabV3+ and PSPNet) to evaluate the detection performance of MAs. The result suggested that MAs-FC-DenseNet had higher values of evaluation metrics than other models, including pixel accuracy (
PA
), mean pixel accuracy (
MPA
), precision (
Pre
), recall (
Re
), F1-score (
F1
), and mean intersection over union (
MIoU
). Moreover, MA detection performance for MAs-FC-DenseNet was very close to the ground truth. Taken together, MAs-FC-DenseNet is a reliable model for rapid and accurate detection of MAs, which would be used for mass screening of DR patients.
Journal Article
Stress-induced nuclear translocation of ONAC023 improves drought and heat tolerance through multiple processes in rice
Drought and heat are major abiotic stresses frequently coinciding to threaten rice production. Despite hundreds of stress-related genes being identified, only a few have been confirmed to confer resistance to multiple stresses in crops. Here we report ONAC023, a hub stress regulator that integrates the regulations of both drought and heat tolerance in rice.
ONAC023
positively regulates drought and heat tolerance at both seedling and reproductive stages. Notably, the functioning of
ONAC023
is obliterated without stress treatment and can be triggered by drought and heat stresses at two layers. The expression of
ONAC023
is induced in response to stress stimuli. We show that overexpressed ONAC23 is translocated to the nucleus under stress and evidence from protoplasts suggests that the dephosphorylation of the remorin protein OSREM1.5 can promote this translocation. Under drought or heat stress, the nuclear ONAC023 can target and promote the expression of diverse genes, such as
OsPIP2;7
,
PGL3
,
OsFKBP20-1b
, and
OsSF3B1
, which are involved in various processes including water transport, reactive oxygen species homeostasis, and alternative splicing. These results manifest that ONAC023 is fine-tuned to positively regulate drought and heat tolerance through the integration of multiple stress-responsive processes. Our findings provide not only an underlying connection between drought and heat responses, but also a promising candidate for engineering multi-stress-resilient rice.
The mechanism of rice adaptation to drought and heat is unclear. Here the authors report ONAC023 as a hub regulator of drought and heat tolerance, offering valuable insights into the multi-layered regulatory mechanisms in multi-stress responses.
Journal Article
Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study
2017
A variety of adverse conditions including drought stress severely affect rice production. Root system plays a critical role in drought avoidance, which is one of the major mechanisms of drought resistance. In this study, we adopted genome-wide association study (GWAS) to dissect the genetic basis controlling various root traits by using a natural population consisting of 529 representative rice accessions. A total of 413 suggestive associations, containing 143 significant associations, were identified for 21 root traits, such as maximum root length, root volume, and root dry weight under normal and drought stress conditions at the maturation stage. More than 80 percent of the suggestive loci were located in the region of reported QTLs for root traits, while about 20 percent of suggestive loci were novel loci detected in this study. Besides, 11 reported root-related genes, including DRO1, WOX11, and OsPID, were found to co-locate with the association loci. We further proved that the association results can facilitate the efficient identification of causal genes for root traits by the two case studies of Nal1 and OsJAZ1. These loci and their candidate causal genes provide an important basis for the genetic improvement of root traits and drought resistance.
Journal Article
A Linear Feature-Based Method for Signal Photon Extraction and Bathymetric Retrieval Using ICESat-2 Data
2025
The ATL03 data from the photon-counting LiDAR onboard the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) holds substantial potential for shallow-water bathymetry due to its high sensitivity and broad spatial coverage. However, distinguishing signal photons from noise in low-photon-density and complex terrain environments remains a significant challenge. This study proposes an adaptive photon extraction algorithm based on linear feature analysis, incorporating resolution adjustment, segmented Gaussian fitting, and linear feature-based signal identification. To address the reduction in signal photon density with increasing water depth, the method employs a depth-dependent adaptive neighborhood search radius, which dynamically expands into deeper regions to ensure reliable local feature computation. Experiments using eight ICESat-2 datasets demonstrated that the proposed method achieves average precision and recall values of 0.977 and 0.958, respectively, with an F1 score of 0.967 and an overall accuracy of 0.972. The extracted bathymetric depths demonstrated strong agreement with the reference Continuously Updated Digital Elevation Model (CUDEM), achieving a coefficient of determination of 0.988 and a root mean square error of 0.829 m. Compared to conventional methods, the proposed approach significantly improves signal photon extraction accuracy, adaptability, and parameter stability, particularly in sparse photon and complex terrain scenarios. In comparison with the DBSCAN algorithm, the proposed method achieves a 30.0% increase in precision, 17.3% improvement in recall, 24.3% increase in F1 score, and 22.2% improvement in overall accuracy. These findings confirm the effectiveness and robustness of the proposed algorithm for ICESat-2 shallow-water bathymetry applications.
Journal Article
The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice
by
Ning, Jing
,
Xiao, Jinghua
,
Hu, Honghong
in
Biological and medical sciences
,
carbon dioxide
,
crop losses
2013
Abiotic stresses such as drought cause a reduction of plant growth and loss of crop yield. Stomatal aperture controls CO 2 uptake and water loss to the atmosphere, thus playing important roles in both the yield gain and drought tolerance of crops. Here, a rice homologue of SRO (similar to RCD one), termed OsSRO1c, was identified as a direct target gene of SNAC1 (stress-responsive NAC 1) involved in the regulation of stomatal aperture and oxidative response. SNAC1 could bind to the promoter of OsSRO1c and activate the expression of OsSRO1c. OsSRO1c was induced in guard cells by drought stress. The loss-of-function mutant of OsSRO1c showed increased stomatal aperture and sensitivity to drought, and faster water loss compared with the wild-type plant, whereas OsSRO1c overexpression led to decreased stomatal aperture and reduced water loss. Interestingly, OsSRO1c-overexpressing rice showed increased sensitivity to oxidative stress. Expression of DST, a reported zinc finger gene negatively regulating H 2 O 2 -induced stomatal closure, and the activity of H 2 O 2 -scavening related enzymes were significantly suppressed, and H 2 O 2 in guard cells was accumulated in the overexpression lines. OsSRO1c interacted with various stress-related regulatory and functional proteins, and some of the OsSRO1c-interacting proteins are predicted to be involved in the control of stomatal aperture and oxidative stress tolerance. The results suggest that OsSRO1c has dual roles in drought and oxidative stress tolerance of rice by promoting stomatal closure and H 2 O 2 accumulation through a novel pathway involving regulators SNAC1 and DST.
Journal Article
A double-stranded RNA binding protein enhances drought resistance via protein phase separation in rice
2024
Drought stress significantly impacts global rice production, highlighting the critical need to understand the genetic basis of drought resistance in rice. Here, through a genome-wide association study, we reveal that natural variations in
DROUGHT RESISTANCE GENE 9
(
DRG9
), encoding a double-stranded RNA (dsRNA) binding protein, contribute to drought resistance. Under drought stress, DRG9 condenses into stress granules (SGs) through liquid-liquid phase separation via a crucial α-helix. DRG9 recruits the mRNAs of
OsNCED4
, a key gene for the biosynthesis of abscisic acid, into SGs and protects them from degradation. In drought-resistant
DRG9
allele, natural variations in the coding region, causing an amino acid substitution (G267F) within the zinc finger domain, increase DRG9’s binding ability to
OsNCED4
mRNA and enhance drought resistance. Introgression of the drought-resistant
DRG9
allele into the elite rice Huanghuazhan significantly improves its drought resistance. Thus, our study underscores the role of a dsRNA-binding protein in drought resistance and its promising value in breeding drought-resistant rice.
Drought is one of the major abiotic stresses affecting rice growth and development. Here, the authors identify a dsRNA-binding protein positively regulates rice drought resistance through promoting stability of
OsNCED4
mRNAs, transcript of a key gene for the biosynthesis of abscisic acid, via protein phase separation.
Journal Article
Transcriptomic analysis reveals critical genes for the hair follicle of Inner Mongolia cashmere goat from catagen to telogen
2018
There are two main types of hair follicle in Inner Mongolia Cashmere goats, the primary hair follicle (PHF) producing hair fibers and the secondary hair follicle (SHF) producing cashmere fibers. Of both fibers from cashmere-bearing goats in Aerbasi, Inner Mongolia, the timing of cyclical phases for the cashmere have been well clarified but hair fibers have been less noticeable. Herein, we evaluated transcriptome of PHF and SHF from the same three goats in Aerbasi at the catagen- and telogen phase of cashmere growth. We totally found 1977 DEGs between PHFs at the telogen and catagen phases of SHF, 1199 DEGs between telogen- and catagen SHF, 2629 DEGs between PHF at the catagen phase of SHF and catagen SHF, and 755 DEGs between PHF at the telogen phase of SHF and telogen SHF. By analyzing gene functions based on GO and KEGG database, we found that the DEGs have functions in muscle contraction and muscle filament sliding between catagen- and telogen SHF, indicating that arrector pilli muscles might play a role on the transition from catagen to telogen. Moreover, considering that the enriched GO and KEGG categories of the DEGs between PHF and SHF, we suggested that part of PHF might rest in their own anagen phase when SHF are at catagen, but PHF might enter into the telogen phase at SHF's telogen. Finally, we highly recommended the several potential genes acting as the regulators of the transition between growth phases including IL17RB and eight members of ZNF. These results provide insight into molecular mechanisms on the transition of SHF from catagen to telogen together with PHF's growth situation at SHF's catagen and telogen in Inner Mongolia Cashmere goats.
Journal Article
Research on Deformation Characteristics and Failure Modes of Tunnel Anchoring in Conglomerate Layers Based on Field Scaled Model Tests
by
Shen, Zhijin
,
Li, Xiaokai
,
Tang, Aipeng
in
Bridges
,
Conglomerate corporations
,
conglomerate rock mass
2025
Tunnel anchors are critical for suspension bridge stability, yet their theoretical framework remains underdeveloped, limiting engineering applications. This study addresses this gap through a pioneering 1:12 in situ scaled model test, combining geological surveys, rock mechanics testing, and large-scale experimentation on a Yangtze River bridge case. Key findings include (1) quantified rock mechanics parameters for anchorage conglomerates, (2) load–displacement relationships revealing surrounding rock-dominated failure, and (3) deformation thresholds for anchor integrity. The 1:12 in situ model overcomes lab-scale limitations, providing the first high-fidelity validation of tunnel anchor behavior. The results offer essential design benchmarks, advancing both theory and practice for large-span bridges.
Journal Article
Anti-Inflammatory Effects of Natural Products on Cerebral Ischemia
by
Tian, Jinfeng
,
Zhang, Zhe
,
Li, Xiaokai
in
anti-inflammatory effect
,
Brain injury
,
Brain research
2022
Cerebral ischemia with high mortality and morbidity still requires the effectiveness of medical treatments. A growing number of investigations have shown strong links between inflammation and cerebral ischemia. Natural medicine’s treatment methods of cerebral ischemic illness have amassed a wealth of treatment experience and theoretical knowledge. This review summarized recent progress on the disease inflammatory pathways as well as 26 representative natural products that have been routinely utilized to treat cerebral ischemic injury. These natural products have exerted anti-inflammatory effects in cerebral ischemia based on their inflammatory mechanisms, including their inflammatory gene expression patterns and their related different cell types, and the roles of inflammatory mediators in ischemic injury. Overall, the combination of the potential therapeutic interventions of natural products with the inflammatory mechanisms will make them be applicable for cerebral ischemic patients in the future.
Journal Article
Influence of Dominant Structural Faces on Anti-Sliding Stability of Gravity Dams in Granite Intrusion Regions
by
Zhang, Xiaolong
,
Huang, Yuezu
,
Li, Xiaokai
in
Analysis
,
anti-sliding stability of dam foundation
,
China
2025
Granite formations provide suitable geological conditions for building gravity dams. However, the presence of intruding granite creates a fractured zone. The interaction of this fractured zone with structural planes and faults can create geological conditions that are unfavorable for the anti-sliding stability of gravity dams. This paper identifies the dominant structural planes that affect the anti-sliding stability of dams by studying the three-dimensional intersection relationships between groups of structural planes, faults, and fracture zones. The three-dimensional distribution and occurrence of the dominant structural planes directly impact the anti-sliding stability and sliding failure mode of gravity dams. Through comprehensive field investigations and systematic analysis of engineering geological data, the spatial distribution characteristics of structural planes and fracture zones were quantitatively characterized. Subsequently, the potential for deep-seated sliding failure of the gravity dam was rigorously evaluated and conclusively dismissed through application of the rigid body limit equilibrium method. It was established that the sliding mode of the foundation of the dam under this combination of structural planes is primarily shallow sliding. Additionally, based on the engineering geological data of the area around the dam, a three-dimensional finite element numerical model was developed to analyze stress–strain calculations under seepage stress coupling conditions and compared with calculations made without considering seepage stress coupling. The importance of seepage in the anti-sliding stability of the foundation of the dam was determined. The research findings provide engineering insights into enhancing the anti-sliding stability of gravity dams in granite distribution areas by (1) identifying critical structural planes and fracture zones that control sliding behavior, (2) demonstrating the necessity of seepage-stress coupling analysis in stability assessments, and (3) guiding targeted reinforcement measures to mitigate shallow sliding risks.
Journal Article