Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
83
result(s) for
"Li, Xican"
Sort by:
Comparison of the Antioxidant Effects of Quercitrin and Isoquercitrin: Understanding the Role of the 6″-OH Group
by
Wang, Tingting
,
Liu, Jingjing
,
Li, Xican
in
6″-OH
,
antioxidant mechanisms
,
flavonoid glycoside
2016
The role of the 6″-OH (ω-OH) group in the antioxidant activity of flavonoid glycosides has been largely overlooked. Herein, we selected quercitrin (quercetin-3-O-rhamnoside) and isoquercitrin (quercetin-3-O-glucoside) as model compounds to investigate the role of the 6″-OH group in several antioxidant pathways, including Fe2+-binding, hydrogen-donating (H-donating), and electron-transfer (ET). The results revealed that quercitrin and isoquercitrin both exhibited dose-dependent antioxidant activities. However, isoquercitrin showed higher levels of activity than quercitrin in the Fe2+-binding, ET-based ferric ion reducing antioxidant power, and multi-pathways-based superoxide anion-scavenging assays. In contrast, quercitrin exhibited greater activity than isoquercitrin in an H-donating-based 1,1-diphenyl-2-picrylhydrazyl radical-scavenging assay. Finally, in a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl assay based on an oxidatively damaged mesenchymal stem cell (MSC) model, isoquercitrin performed more effectively as a cytoprotector than quercitrin. Based on these results, we concluded that (1) quercitrin and isoquercitrin can both indirectly (i.e., Fe2+-chelating or Fe2+-binding) and directly participate in the scavenging of reactive oxygen species (ROS) to protect MSCs against ROS-induced oxidative damage; (2) the 6″-OH group in isoquercitrin enhanced its ET and Fe2+-chelating abilities and lowered its H-donating abilities via steric hindrance or H-bonding compared with quercitrin; and (3) isoquercitrin exhibited higher ROS scavenging activity than quercitrin, allowing it to improve protect MSCs against ROS-induced oxidative damage.
Journal Article
3′,8″-Dimerization Enhances the Antioxidant Capacity of Flavonoids: Evidence from Acacetin and Isoginkgetin
2019
To probe the effect of 3′,8″-dimerization on antioxidant flavonoids, acacetin and its 3′,8″-dimer isoginkgetin were comparatively analyzed using three antioxidant assays, namely, the ·O2− scavenging assay, the Cu2+ reducing assay, and the 2,2′-azino bis(3-ethylbenzothiazolin-6-sulfonic acid) radical scavenging assay. In these assays, acacetin had consistently higher IC50 values than isoginkgetin. Subsequently, the acacetin was incubated with 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxy radicals (4-methoxy-TEMPO) and then analyzed by ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC−ESI−Q−TOF−MS) technology. The results of the UHPLC−ESI−Q−TOF−MS analysis suggested the presence of a dimer with m/z 565, 550, 413, 389, 374, 345, 330, and 283 peaks. By comparison, standard isoginkgetin yielded peaks at m/z 565, 533, 518, 489, 401, 389, 374, and 151 in the mass spectra. Based on these experimental data, MS interpretation, and the relevant literature, we concluded that isoginkgetin had higher electron transfer potential than its monomer because of the 3′,8″-dimerization. Additionally, acacetin can produce a dimer during its antioxidant process; however, the dimer is not isoginkgetin.
Journal Article
Gallic Acid Alleviates Gouty Arthritis by Inhibiting NLRP3 Inflammasome Activation and Pyroptosis Through Enhancing Nrf2 Signaling
2020
Gallic acid is an active phenolic acid widely distributed in plants, and there is compelling evidence to prove its anti-inflammatory effects. NLRP3 inflammasome dysregulation is closely linked to many inflammatory diseases. However, how gallic acid affects the NLRP3 inflammasome remains unclear. Therefore, in the present study, we investigated the mechanisms underlying the effects of gallic acid on the NLRP3 inflammasome and pyroptosis, as well as its effect on gouty arthritis in mice. The results showed that gallic acid inhibited lactate dehydrogenase (LDH) release and pyroptosis in lipopolysaccharide (LPS)-primed and ATP-, nigericin-, or monosodium urate (MSU) crystal-stimulated macrophages. Additionally, gallic acid blocked NLRP3 inflammasome activation and inhibited the subsequent activation of caspase-1 and secretion of IL-1β. Gallic acid exerted its inhibitory effect by blocking NLRP3-NEK7 interaction and ASC oligomerization, thereby limiting inflammasome assembly. Moreover, gallic acid promoted the expression of nuclear factor E2-related factor 2 (Nrf2) and reduced the production of mitochondrial ROS (mtROS). Importantly, the inhibitory effect of gallic acid could be reversed by treatment with the Nrf2 inhibitor ML385. NRF2 siRNA also abolished the inhibitory effect of gallic acid on IL-1β secretion. The results further showed that gallic acid could mitigate MSU-induced joint swelling and inhibit IL-1β and caspase 1 (p20) production in mice. Moreover, gallic acid could moderate MSU-induced macrophages and neutrophils migration into joint synovitis. In summary, we found that gallic acid suppresses ROS generation, thereby limiting NLRP3 inflammasome activation and pyroptosis dependent on Nrf2 signaling, suggesting that gallic acid possesses therapeutic potential for the treatment of gouty arthritis.
Journal Article
Antioxidant Structure–Activity Relationship Analysis of Five Dihydrochalcones
by
Xie, Hong
,
Chen, Ban
,
Li, Xican
in
Antioxidants
,
Antioxidants - chemistry
,
Antioxidants - pharmacology
2018
The study determined the comparative antioxidant capacities of five similar dihydrochalcones: phloretin, phloridzin, trilobatin, neohesperidin dihydrochalcone, and naringin dihydrochalcone. In the ferric-reducing antioxidant power (FRAP) assay, the antioxidant activities of pairs of dihydrochalcones had the following relationship: phloretin > phloridzin, phloretin > trilobatin, trilobatin > phloridzin, trilobatin > naringin dihydrochalcone, and neohesperidin dihydrochalcone > naringin dihydrochalcone. Similar relative antioxidant levels were also obtained from 1,1-diphenyl-2-picryl-hydrazl radical (DPPH•)-scavenging, 2,2′-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS•+)-scavenging, and superoxide radical (•O2−)-scavenging assays. Using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC−ESI−Q−TOF−MS/MS) analysis for the reaction products with DPPH•, phloretin, phloridzin, and trilobatin were found to yield both dihydrochalcone-DPPH adduct and dihydrochalcone-dihydrochalcone dimer, whereas naringin dihydrochalcone gave a naringin dihydrochalcone-DPPH adduct, and neohesperidin dihydrochalcone gave a dimer. In conclusion, the five dihydrochalcones may undergo redox-based reactions (especially electron transfer (ET) and hydrogen atom transfer (HAT)), as well as radical adduct formation, to exert their antioxidant action. Methoxylation at the ortho-OH enhances the ET and HAT potential possibly via p-π conjugation, whereas the glycosylation of the –OH group not only reduces the ET and HAT potential but also hinders the ability of radical adduct formation. The 2′,6′-di-OH moiety in dihydrochalcone possesses higher ET and HAT activities than the 2′,4′-di-OH moiety because of its resonance with the adjacent keto group.
Journal Article
Comparative Analysis of Radical Adduct Formation (RAF) Products and Antioxidant Pathways between Myricetin-3-O-Galactoside and Myricetin Aglycone
by
Ouyang, Xiaojian
,
Li, Xican
,
Chen, Dongfeng
in
3-O-galactosylation
,
antioxidant pathway
,
Antioxidants
2019
The biological process, 3-O-galactosylation, is important in plant cells. To understand the mechanism of the reduction of flavonol antioxidative activity by 3-O-galactosylation, myricetin-3-O-galactoside (M3OGa) and myricetin aglycone were each incubated with 2 mol α,α-diphenyl-β-picrylhydrazyl radical (DPPH•) and subsequently comparatively analyzed for radical adduct formation (RAF) products using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS) technology. The analyses revealed that M3OGa afforded an M3OGa–DPPH adduct (m/z 873.1573) and an M3OGa–M3OGa dimer (m/z 958.1620). Similarly, myricetin yielded a myricetin–DPPH adduct (m/z 711.1039) and a myricetin–myricetin dimer (m/z 634.0544). Subsequently, M3OGa and myricetin were compared using three redox-dependent antioxidant analyses, including DPPH•-trapping analysis, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•)-trapping analysis, and •O2 inhibition analysis. In the three analyses, M3OGa always possessed higher IC50 values than those of myricetin. Conclusively, M3OGa and its myricetin aglycone could trap the free radical via a chain reaction comprising of a propagation step and a termination step. At the propagation step, both M3OGa and myricetin could trap radicals through redox-dependent antioxidant pathways. The 3-O-galactosylation process, however, could limit these pathways; thus, M3OGa is an inferior antioxidant compared to its myricetin aglycone. Nevertheless, 3-O-galactosylation has a negligible effect on the termination step. This 3-O-galactosylation effect has provided novel evidence that the difference in the antioxidative activities of phytophenols exists at the propagation step rather than the termination step.
Journal Article
Preconditioning Enhances the Therapeutic Effects of Mesenchymal Stem Cells on Colitis Through PGE2-Mediated T-Cell Modulation
2018
Mesenchymal stem cell (MSC)-based cell therapy has been demonstrated as a promising strategy in the treatment of inflammatory bowel disease (IBD), which is considered an immune disease. While the exact mechanisms underlying the therapeutic effect of MSCs are still unclear, MSCs display anti-inflammatory and immunomodulatory effects by interacting with various immunoregulatory cells. Our previous studies have shown that MSCs can be preconditioned and deconditioned with enhanced cell survival, differentiation and migration. In this study, we evaluated the effect of preconditioning on the immunoregulatory function of human umbilical cord-derived MSCs (hUCMSCs) and their therapeutic effect on treating IBD. Our results show that intraperitoneal administration of deconditioned hUCMSCs (De-hUCMSCs) reduces the disease activity index (DAI), histological colitis score and destruction of the epithelial barrier, and increases the body weight recovery more intensively than that of un-manipulated hUCMSCs. In addition, De-hUCMSCs but not hUCMSCs elicit anti-apoptotic effects via induction of the ERK pathway during the early stage of IBD development. In vitro co-culture studies indicate that De-hUCMSCs suppress T-cell proliferation and activation more markedly than hUCMSCs. Moreover, De-hUCMSCs block the induction of inflammatory cytokines such as tumor necrosis factor (TNF)α and interleukin (IL)-2, while promoting the secretion of the anti-inflammatory cytokine IL-10 in T-cells. Mechanically, we find that prostaglandin E2 (PGE2) secretion is significantly increased in De-hUCMSCs, the suppression of which dramatically abrogates the inhibitory effect of De-hUCMSCs on T-cell activation, implying that the crosstalk between De-hUCMSCs and T-cells is mediated by PGE2. Together, we have demonstrated that preconditioning enhances the immunosuppressive and therapeutic effects of hUCMSCs on treating IBD via increased secretion of PGE2.
Journal Article
Antioxidant Mechanisms of Echinatin and Licochalcone A
2018
Echinatin and its 1,1-dimethyl-2-propenyl derivative licochalcone A are two chalcones found in the Chinese herbal medicine Gancao. First, their antioxidant mechanisms were investigated using four sets of colorimetric measurements in this study. Three sets were performed in aqueous solution, namely Cu2+-reduction, Fe3+-reduction, and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•)-scavenging measurements, while 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•)-scavenging colorimetric measurements were conducted in methanol solution. The four sets of measurements showed that the radical-scavenging (or metal-reduction) percentages for both echinatin and licochalcone A increased dose-dependently. However, echinatin always gave higher IC50 values than licochalcone A. Further, each product of the reactions of the chalcones with DPPH• was determined using electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS). The UPLC-ESI-Q-TOF-MS/MS determination for echinatin yielded several echinatin–DPPH adduct peaks (m/z 662, 226, and 196) and dimeric echinatin peaks (m/z 538, 417, and 297). Similarly, that for licochalcone A yielded licochalcone A-DPPH adduct peaks (m/z 730, 226, and 196) and dimeric licochalcone A peaks (m/z 674 and 553). Finally, the above experimental data were analyzed using mass spectrometry data analysis techniques, resonance theory, and ionization constant calculations. It was concluded that, (i) in aqueous solution, both echinatin and licochalcone A may undergo an electron transfer (ET) and a proton transfer (PT) to cause the antioxidant action. In addition, (ii) in alcoholic solution, hydrogen atom transfer (HAT) antioxidant mechanisms may also occur for both. HAT may preferably occur at the 4-OH, rather than the 4′-OH. Accordingly, the oxygen at the 4-position participates in radical adduct formation (RAF). Lastly, (iii) the 1,1-dimethyl-2-propenyl substituent improves the antioxidant action in both aqueous and alcoholic solutions.
Journal Article
Dual Effect of Glucuronidation of a Pyrogallol-Type Phytophenol Antioxidant: A Comparison between Scutellarein and Scutellarin
2018
To explore whether and how glucuronidation affects pyrogallol-type phytophenols, scutellarein and scutellarin (scutellarein-7-O-glucuronide) were comparatively investigated using a set of antioxidant analyses, including spectrophotometric analysis, UV-vis spectra analysis, and ultra-performance liquid chromatography coupled with electrospray ionization-quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) analysis. In spectrophotometric analyses of the scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH•), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+•), and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radicals (PTIO•) and the reduction of Cu2+ ions, scutellarein showed lower IC50 values than scutellarin. However, in •O2−-scavenging spectrophotometric analysis, scutellarein showed higher IC50 value than scutellarin. The analysis of UV-Vis spectra obtained after the Fe2+-chelating reaction of scutellarin showed a typical UV-Vis peak (λmax = 611 nm), while scutellarein showed no typical peak. In UPLC-ESI-Q-TOF-MS/MS analysis, mixing of scutellarein with DPPH• yielded MS peaks (m/z 678, 632, 615, 450, 420, 381, 329, 300, 288, 227, 196, 182, 161, and 117) corresponding to the scutellarein-DPPH adduct and an MS peak (m/z 570) corresponding to the scutellarein-scutellarein dimer. Scutellarin, however, generated no MS peak. On the basis of these findings, it can be concluded that glucuronidation of pyrogallol-type phytophenol antioxidants has a dual effect. On the one hand, glucuronidation can decrease the antioxidant potentials (except for •O2− scavenging) and further lower the possibility of radical adduct formation (RAF), while on the other hand, it can enhance the •O2−-scavenging and Fe2+-chelating potentials.
Journal Article
Correlation between Antioxidant Activities and Phenolic Contents of Radix Angelicae Sinensis (Danggui)
2009
Radix Angelicae Sinensisis (RAS) is one of the most popular traditional Chinese herbal medicines. In the present study, six RAS extracts (i.e., phenolic extract PE, petroleum ether extract PEE, ethyl acetate extract EAE, absolute ethanol extract AEE, 95% ethanol extract 95 EE, and water extract WE) were prepared and their antioxidant activities measured by DPPH (1,1-diphenyl-2-picrylhydrazyl radical), ABTS [2,2′-azino-bis(3- ethylbenzothiazoline-6-sulfonic acid diammonium salt)], Reducing power, •O2– and lipid peroxidation assays. In general, PE, PEE and EAE had relatively high antioxidant activity, followed by AEE with moderate activity, as compared with 95 EE and WE that had low activity. Their phenolic contents (including total phenolic, ferulic acid, caffeic acid, same as below) were then determined by HPLC or spectrophotometry. The sequence of phenolic contents was roughly identical with that of antioxidant activity. When the values of 1/IC50 of various antioxidant assays were used to evaluate the level of antioxidant of the RAS extracts, (plot between 1/IC50 values and phenolic contents), the correlation coefficient (R) ranged from 0.642 to 0.941, with an average value of 0.839. Significant positive correlations demonstrated that the antioxidant effects of RAS might generally be considered a result of the presence of the phenolic compounds, especially ferulic acid and caffeic acid.
Journal Article
Antioxidant activity and mechanism of Rhizoma Cimicifugae
2012
BackgroundAs a typical Chinese herbal medicine, rhizoma Cimicifugae (RC, 升麻 in Chinese) possesses various pharmacological effects involved in antioxidant activity. However, its antioxidant activity has not been reported so far. The aim of the present study was to systematically evaluate the antioxidant ability of RC in vitro, then discuss the mechanism.MethodsFirstly, five RC extracts (i.e. petroleum ether extract PERC, ethyl acetate extract EARC, absolute ethanol extract AERC, 95% ethanol extract 95ERC, and water extract WRC) were prepared and determined by various antioxidant methods, including anti-lipidperoxidation, protection against DNA damage, ·OH scavenging, ·O2- scavenging, DPPH· (1,1-diphenyl-2-picryl-hydrazl radical) scavenging, ABTS+· (2,2’-azino-bis (3-ethylbenzo- thiazoline-6-sulfonic acid radical ion) scavenging, Cu2+-chelating, and Fe3+ reducing assays. Subsequently, we measured the chemical contents of five RC extracts, including total phenolics, total saponins, total sugars, caffeic acid, ferulic acid and isoferulic acid. Finally, we quantitatively analyzed the correlations between antioxidant levels (1/IC50 values) and chemical contents.ResultsIn the study, the antioxidant levels and chemical contents (including total phenolics, total saponins, total sugars, caffeic acid, ferulic acid and isoferulic acid) of five RC extracts were determined by various methods. In all antioxidant assays, five RC extracts increased the antioxidant levels in a dose-dependent manner. However, their antioxidant levels (IC50 values) and chemical contents significantly differed from each other. Quantitative analysis of the correlation showed that total phenolic was of significant positive correlations (average R value was 0.56) with antioxidant levels; In contrast, total sugars and total saponins had no positive correlation with antioxidant (the average R values were −0.20 and −0.26, for total sugars and total saponins, respectively); Among total phenolics, three phenolic acids (caffeic acid, ferulic acid and isoferulic acid) also displayed positive correlations (the average R values were 0.51, 0.50, and 0.51, for caffeic acid, ferulic acid and isoferulic acid, respectively).ConclusionsAs an effective antioxidant, Rhizoma Cimicifugae can protect DNA and lipids against oxidative damage. Its antioxidant ability can be responsible for its various pharmacological effects and may be mainly attributed to the existence of total phenolics, among which caffeic acid, ferulic acid and isoferulic acid are regarded as main bioactive components. Rhizoma Cimicifugae exerts its antioxidant effect through metal-chelating, and radical-scavenging which is via donating hydrogen atom (H·) and donating electron (e).
Journal Article