Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,296
result(s) for
"Li, Yufeng"
Sort by:
Can different information channels promote farmers’ adoption of Agricultural Green Production Technologies? Empirical insights from Sichuan Province
by
Zhang, Ruyu
,
Feng, Yanan
,
Zheng, Ke
in
Access to Information
,
Adult
,
Agricultural development
2024
Information accessibility is a pivotal factor influencing farmers’ adoption of Agricultural Green Production Technologies (AGPT). However, the widespread issue of information poverty presents a significant obstacle to this adoption process, thereby hindering the progression towards sustainable agricultural development. To address this information deficit, farmers have begun to utilize the Internet and participate in government-led onsite assembly training programs to acquire the necessary knowledge. Yet there is still a lack of research evidence on the effectiveness and comparative advantages of internet and offline training. This study explores the impact of various information access channels on farmers’ adoption of green production technologies in agriculture, focusing on a sample of 731 family farms located in Sichuan Province. The issue of endogeneity was addressed using the Conditional Mixed Process Estimation Method. The sample underwent a t-test and heterogeneity analysis. The findings revealed that both internet-based information access and participation in training significantly bolstered farmers’ adoption of AGPT, with the former proving to be more effective. Notably, heterogeneity was observed among farmers, differentiated by age and the number of village cadres within their family units.
Journal Article
In situ analysis of nanoparticle soft corona and dynamic evolution
2022
How soft corona, the protein corona’s outer layer, contributes to biological identity of nanomaterials is largely because capturing protein composition of the soft corona in situ remains challenging. We herein develop an in situ Fishing method that can monitor the dynamic formation of protein corona on ultra-small chiral Cu
2
S nanoparticles (NPs) allowing us to directly separate and identify the corona protein composition. Our method detects spatiotemporal processes in the evolution of hard and soft coronas on chiral NPs, revealing subtle differences in NP − protein interactions even within several minutes. This study highlights the importance of in situ and dynamic analysis of soft/hard corona, provides insights into the role of soft corona in mediating biological responses of NPs, and offers a universal strategy to characterize soft corona to guide the rational design of biomedical nanomaterials.
Characterizing the soft protein corona on nanoparticles i.e. the outer layer of the corona, remains a longstanding challenge. Here, the authors develop an in situ method to monitor the dynamic processes of multilayered corona formation and evolution that offers a universal strategy to characterize the soft corona proteome.
Journal Article
Cold-stress induced metabolomic and transcriptomic changes in leaves of three mango varieties with different cold tolerance
2024
Background
Mango (
Mangifera indica
L.) is grown in Hainan, Guangdong, Yunnan, Sichuan, and Fujian provinces and Guanxi autonomous region of China. However, trees growing in these areas suffer severe cold stress during winter, which affects the yield. To this regard, data on global metabolome and transcriptome profiles of leaves are limited. Here, we used combined metabolome and transcriptome analyses of leaves of three mango cultivars with different cold stress tolerance, i.e. Jinhuang (J)—tolerant, Tainung (T) and Guiremang No. 82 (G)—susceptible, after 24 (LF), 48 (MF) and 72 (HF) hours of cold.
Results
A total of 1,323 metabolites belonging to 12 compound classes were detected. Of these, amino acids and derivatives, nucleotides and derivatives, and lipids accumulated in higher quantities after cold stress exposure in the three cultivars. Notably, Jinhuang leaves showed increasing accumulation trends of flavonoids, terpenoids, lignans and coumarins, and alkaloids with exposure time. Among the phytohormones, jasmonic acid and abscisic acid levels decreased, while N6-isopentenyladenine increased with cold stress time. Transcriptome analysis led to the identification of 22,526 differentially expressed genes. Many genes enriched in photosynthesis, antenna proteins, flavonoid, terpenoid (di- and sesquiterpenoids) and alkaloid biosynthesis pathways were upregulated in Jihuang leaves. Moreover, expression changes related to phytohormones, MAPK (including calcium and H
2
O
2
), and the ICE-CBF-COR signalling cascade indicate involvement of these pathways in cold stress responses.
Conclusion
Cold stress tolerance in mango leaves is associated with regulation of primary and secondary metabolite biosynthesis pathways. Jasmonic acid, abscisic acid, and cytokinins are potential regulators of cold stress responses in mango leaves.
Journal Article
Genomic imprinting in mammals: its life cycle, molecular mechanisms and reprogramming
Genomic imprinting, an epigenetic gene-marking phenomenon that occurs in the germline, leads to parental-origin-specific expression of a small subset of genes in mammals. Imprinting has a great impact on normal mammalian development, fetal growth, metabolism and adult behavior. The epigenetic imprints regarding the parental origin are established during male and female gametogenesis, passed to the zygote through fertilization, maintained throughout development and adult life, and erased in primordial germ cells before the new imprints are set. In this review, we focus on the recent discoveries on the mechanisms involved in the reprogramming and maintenance of the imprints. We also discuss the epigenetic changes that occur at imprinted loci in induced pluripotent stem cells.
Journal Article
Advances in research and application of photodynamic therapy in cholangiocarcinoma (Review)
by
Liu, Sulai
,
Song, Yinghui
,
Li, Yuhang
in
Bile Duct Neoplasms - drug therapy
,
Bile Duct Neoplasms - pathology
,
Bile ducts
2024
Cholangiocarcinoma (CCA) is a disease characterized by insidious clinical manifestations and challenging to diagnose. Patients are usually diagnosed at an advanced stage and miss the opportunity for radical surgery. Therefore, effective palliative therapy is the main treatment approach for unresectable CCA. Current common palliative treatments include biliary drainage, chemotherapy, radiotherapy, targeted therapy and immunotherapy. However, these treatments only offer limited improvement in quality of life and survival. Photodynamic therapy (PDT) is a novel local treatment method that is considered a safe tumor ablation method for numerous cancers. It has shown good efficacy in various studies of CCA and is expected to become an important treatment for CCA. In the present study, the mechanisms of PDT in the treatment of CCA were systematically explored and the progress in the research of photosensitizers was discussed. The current study focused on the various PDT protocols and their therapeutic effects in CCA, with the objective of providing a new horizon for future research and clinical applications of PDT in the treatment of CCA.
Journal Article
Metadata-Private Resource Allocation in Edge Computing Withstands Semi-Malicious Edge Nodes
2024
Edge computing provides higher computational power and lower transmission latency by offloading tasks to nearby edge nodes with available computational resources to meet the requirements of time-sensitive tasks and computationally complex tasks. Resource allocation schemes are essential to this process. To allocate resources effectively, it is necessary to attach metadata to a task to indicate what kind of resources are needed and how many computation resources are required. However, these metadata are sensitive and can be exposed to eavesdroppers, which can lead to privacy breaches. In addition, edge nodes are vulnerable to corruption because of their limited cybersecurity defenses. Attackers can easily obtain end-device privacy through unprotected metadata or corrupted edge nodes. To address this problem, we propose a metadata privacy resource allocation scheme that uses searchable encryption to protect metadata privacy and zero-knowledge proofs to resist semi-malicious edge nodes. We have formally proven that our proposed scheme satisfies the required security concepts and experimentally demonstrated the effectiveness of the scheme.
Journal Article
Tribological performance of various metal-doped carbon dots as water-based lubricant additives and their potential application as additives of poly(ethylene glycol)
2022
Advances in nano-lubricant additives are vital to the pursuit of energy efficiency and sustainable development. Carbon dots (CDs) have been widely investigated in the domain of lubricant additives owing to their extraordinary tribological properties, in particular, their friction-reducing and anti-wear properties. Metal-doped CDs are a new type of CDs, and their friction-reducing and anti-wear properties are attracting increasing attention. Therefore, a series of CDs doped with various divalent metal ions have been successfully synthesized via one-pot pyrolysis. The tribological properties of the synthesized CDs as water-based lubricant additives are in the following order: Zn-CDs > Cu-CDs ≫ Mg-CDs > Fe-CDs > U-CDs. Specifically, adding 1.0 wt% of Zn-CDs into water-based lubricant results in 62.5% friction and 81.8% wear reduction. Meanwhile, the load-carrying capacity of the water-based lubricant increases from 120 N to at least 500 N. Zn-CDs as an additive have long service life. Additionally, anion-tuned Zn-CDs fabricated via anion exchange exhibit promise as lubricant additives for poly(ethylene glycol). Based on the results of wear scar surface analyses, it is discovered that tribochemical films, primarily composed of iron oxides, nitrides, metal carbonates, zinc oxides, zinc carbonates, organic compounds, and embedded carbon cores, formed on the rubbing surfaces with a thickness of approximately 270 nm when Zn-CDs are used as additives. This film combined with the “ball-bearing” and third-particle effects of Zn-CDs contributed to excellent lubrication performance.
Journal Article
Elevated Progesterone Levels on the Day of Oocyte Maturation May Affect Top Quality Embryo IVF Cycles
2016
In contrast to the impact of elevated progesterone on endometrial receptivity, the data on whether increased progesterone levels affects the quality of embryos is still limited. This study retrospectively enrolled 4,236 fresh in vitro fertilization (IVF) cycles and sought to determine whether increased progesterone is associated with adverse outcomes with regard to top quality embryos (TQE). The results showed that the TQE rate significantly correlated with progesterone levels on the day of human chorionic gonadotropin (hCG) trigger (P = 0.009). Multivariate linear regression analysis of factors related to the TQE rate, in conventional IVF cycles, showed that the TQE rate was negatively associated with progesterone concentration on the day of hCG (OR was -1.658, 95% CI: -2.806 to -0.510, P = 0.005). When the serum progesterone level was within the interval 2.0-2.5 ng/ml, the TQE rate was significantly lower (P <0.05) than when the progesterone level was < 1.0 ng/ml; similar results were obtained for serum progesterone levels >2.5 ng/ml. Then, we choose a progesterone level at 1.5ng/ml, 2.0 ng/ml and 2.5 ng/ml as cut-off points to verify this result. We found that the TQE rate was significantly different (P <0.05) between serum progesterone levels < 2.0 ng/ml and >2.0 ng/ml. In conclusion, the results of this study clearly demonstrated a negative effect of elevated progesterone levels on the day of hCG trigger, on TQE rate, regardless of the basal FSH, the total gonadotropin, the age of the woman, or the time of ovarian stimulation. These data demonstrate that elevated progesterone levels (>2.0 ng/ml) before oocyte maturation were consistently detrimental to the oocyte.
Journal Article