Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
421 result(s) for "Li, Zhaoqing"
Sort by:
Realising high aspect ratio 10 nm feature size in laser materials processing in air at 800 nm wavelength in the far-field by creating a high purity longitudinal light field at focus
In semiconductor and data storage device manufacturing, it is desirable to produce feature sizes less than 30 nm with a high depth-to-width aspect ratio on the target material rapidly at a low cost. However, optical diffraction limits the smallest focused laser beam diameter to around half of the laser wavelength (λ/2). The existing approach to achieving nanoscale fabrication is mainly based on costly extreme ultraviolet (EUV) technology operating within the diffraction limit. In this paper, a new method is shown to achieve materials processing resolution down to 10 nm (λ/80) at an infrared laser wavelength of around 800 nm in the far-field, in air, well beyond the optical diffraction limit. A high-quality longitudinal field with a purity of 94.7% is generated to realise this super-resolution. Both experiments and theoretical modelling have been carried out to verify and understand the findings. The ablation craters induced on polished silicon, copper, and sapphire are compared for different types of light fields. Holes of 10–30 nm in diameter are produced on sapphire with a depth-to-width aspect ratio of over 16 and a zero taper with a single pulse at 100–120 nJ pulse energy. Such high aspect ratio sub-50 nm holes produced with single pulse laser irradiation are rarely seen in laser processing, indicating a new material removal mechanism with the longitudinal field. The working distance (lens to target) is around 170 µm, thus the material processing is in the far field. Tapered nano-holes can also be produced by adjusting the lens to the target distance.Holes of 10–30 nm in diameter are produced on sapphire with a depth to width aspect ratio of over 16 and a zero taper with a single pulse longitudinal field.
Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer
Background Ferroptosis is a newly defined form of regulated cell death characterized by the iron-dependent accumulation of lipid peroxidation and is involved in various pathophysiological conditions, including cancer. Targeting ferroptosis is considered to be a novel anti-cancer strategy. The identification of FDA-approved drugs as ferroptosis inducers is proposed to be a new promising approach for cancer treatment. Despite a growing body of evidence indicating the potential efficacy of the anti-diabetic metformin as an anti-cancer agent, the exact mechanism underlying this efficacy has not yet been fully elucidated. Methods The UFMylation of SLC7A11 is detected by immunoprecipitation and the expression of UFM1 and SLC7A11 in tumor tissues was detected by immunohistochemical staining. The level of ferroptosis is determined by the level of free iron, total/lipid Ros and GSH in the cells and the morphological changes of mitochondria are observed by transmission electron microscope. The mechanism in vivo was verified by in situ implantation tumor model in nude mice. Results Metformin induces ferroptosis in an AMPK-independent manner to suppress tumor growth. Mechanistically, we demonstrate that metformin increases the intracellular Fe 2+ and lipid ROS levels. Specifically, metformin reduces the protein stability of SLC7A11, which is a critical ferroptosis regulator, by inhibiting its UFMylation process. Furthermore, metformin combined with sulfasalazine, the system x c − inhibitor, can work in a synergistic manner to induce ferroptosis and inhibit the proliferation of breast cancer cells. Conclusions This study is the first to demonstrate that the ability of metformin to induce ferroptosis may be a novel mechanism underlying its anti-cancer effect. In addition, we identified SLC7A11 as a new UFMylation substrate and found that targeting the UFM1/SLC7A11 pathway could be a promising cancer treatment strategy.
Detection of circulating tumor cells: opportunities and challenges
Circulating tumor cells (CTCs) are cells that shed from a primary tumor and travel through the bloodstream. Studying the functional and molecular characteristics of CTCs may provide in-depth knowledge regarding highly lethal tumor diseases. Researchers are working to design devices and develop analytical methods that can capture and detect CTCs in whole blood from cancer patients with improved sensitivity and specificity. Techniques using whole blood samples utilize physical prosperity, immunoaffinity or a combination of the above methods and positive and negative enrichment during separation. Further analysis of CTCs is helpful in cancer monitoring, efficacy evaluation and designing of targeted cancer treatment methods. Although many advances have been achieved in the detection and molecular characterization of CTCs, several challenges still exist that limit the current use of this burgeoning diagnostic approach. In this review, a brief summary of the biological characterization of CTCs is presented. We focus on the current existing CTC detection methods and the potential clinical implications and challenges of CTCs. We also put forward our own views regarding the future development direction of CTCs.
Feasibility of filter-exchange imaging (FEXI) in measuring different exchange processes in human brain
Transmembrane water exchange, including intra-to-extravascular and intra-to-extracellular ones, are potential biomarkers in the diagnosis and understanding of cancers, brain disorders, and other diseases. Filter-exchange imaging (FEXI), a special case of diffusion exchange spectroscopy (DEXSY) adapted for clinical applications, has the potential to reveal different physiological water exchange processes using the same MRI sequence. In this study, we aim to explore the feasibility of FEXI in measuring different water exchange processes by modulating the diffusion filter (bf) and detection blocks in FEXI. Two FEXI protocols were implemented on a 3T MRI clinical scanner and reveal distinct apparent exchange rate (AXR) contrast in brain tissues in seven healthy volunteers. AXR estimated from a FEXI protocol with bf ​= ​250 ​s/mm2, which is expected to filter out the vascular water specifically, are significantly larger than those of a FEXI protocol with bf ​= ​900 ​s/mm2. Besides, the filter efficiency of FEXI with bf ​= ​250 ​s/mm2 shows a strong correlation with vascular density, a metric estimated as the fraction of water exhibiting intravoxel incoherent motion (IVIM). AXR of FEXI with bf ​= ​250 ​s/mm2 agrees with the vascular water efflux rate constants reported by other independent measurements, although the physiological basis of the AXR of FEXI with bf ​= ​900 ​s/mm2 is not clear yet. Collectively, our current results demonstrate the feasibility of FEXI in measuring different water exchange processes in vivo, and that FEXI targeting the vascular water could help characterize the intra-to-extravascular water exchange process. [Display omitted]
Cancer‐associated fibroblasts in breast cancer: Challenges and opportunities
The tumor microenvironment is proposed to contribute substantially to the progression of cancers, including breast cancer. Cancer‐associated fibroblasts (CAFs) are the most abundant components of the tumor microenvironment. Studies have revealed that CAFs in breast cancer originate from several types of cells and promote breast cancer malignancy by secreting factors, generating exosomes, releasing nutrients, reshaping the extracellular matrix, and suppressing the function of immune cells. CAFs are also becoming therapeutic targets for breast cancer due to their specific distribution in tumors and their unique biomarkers. Agents interrupting the effect of CAFs on surrounding cells have been developed and applied in clinical trials. Here, we reviewed studies examining the heterogeneity of CAFs in breast cancer and expression patterns of CAF markers in different subtypes of breast cancer. We hope that summarizing CAF‐related studies from a historical perspective will help to accelerate the development of CAF‐targeted therapeutic strategies for breast cancer.
Mechanics-driven nuclear localization of YAP can be reversed by N-cadherin ligation in mesenchymal stem cells
Mesenchymal stem cells adopt differentiation pathways based upon cumulative effects of mechanosensing. A cell’s mechanical microenvironment changes substantially over the course of development, beginning from the early stages in which cells are typically surrounded by other cells and continuing through later stages in which cells are typically surrounded by extracellular matrix. How cells erase the memory of some of these mechanical microenvironments while locking in memory of others is unknown. Here, we develop a material and culture system for modifying and measuring the degree to which cells retain cumulative effects of mechanosensing. Using this system, we discover that effects of the RGD adhesive motif of fibronectin (representative of extracellular matrix), known to impart what is often termed “mechanical memory” in mesenchymal stem cells via nuclear YAP localization, are erased by the HAVDI adhesive motif of the N-cadherin (representative of cell-cell contacts). These effects can be explained by a motor clutch model that relates cellular traction force, nuclear deformation, and resulting nuclear YAP re-localization. Results demonstrate that controlled storage and removal of proteins associated with mechanical memory in mesenchymal stem cells is possible through defined and programmable material systems. Mesenchymal stem cells adopt differentiation pathways based upon mechanical cues in their environment which change throughout development. Here the authors develop a material and culture system to modify and measure the degree to which cells retain cumulative effects of mechanosensing to explore how cells erase the memory of some cues while locking in memory of others.
Vascular-water-exchange MRI (VEXI) enables the detection of subtle AXR alterations in Alzheimer's disease without MRI contrast agent, which may relate to BBB integrity
•The vascular water exchange MRI (VEXI) is a contrast-agent-free method proposed to assess BBB permeability•Apparent water exchange rate across BBB (AXRBBB) becomes higher specifically in the hippocampus, medial orbital frontal cortex, and thalamus in AD•AXRBBB is significantly correlated with cognitive dysfunction Blood-brain barrier (BBB) impairment is an important pathophysiological process in Alzheimer's disease (AD) and a potential biomarker for early diagnosis of AD. However, most current neuroimaging methods assessing BBB function need the injection of exogenous contrast agents (or tracers), which limits the application of these methods in a large population. In this study, we aim to explore the feasibility of vascular water exchange MRI (VEXI), a diffusion-MRI-based method proposed to assess the BBB permeability to water molecules without using a contrast agent, in the detection of the BBB breakdown in AD. We tested VEXI on a 3T MRI scanner on three groups: AD patients (AD group), mild cognitive impairment (MCI) patients due to AD (MCI group), and the age-matched normal cognition subjects (NC group). Interestingly, we find that the apparent water exchange across the BBB (AXRBBB) measured by VEXI shows higher values in MCI compared with NC, and this higher AXRBBB happens specifically in the hippocampus. This increase in AXRBBB value gets larger and extends to more brain regions (medial orbital frontal cortex and thalamus) from MCI group to the AD group. Furthermore, we find that the AXRBBB values of these three regions is correlated significantly with the impairment of respective cognitive domains independent of age, sex and education. These results suggest VEXI is a promising method to assess the BBB breakdown in AD.
Targeting ferroptosis in breast cancer
Ferroptosis is a recently discovered distinct type of regulated cell death caused by the accumulation of lipid-based ROS. Metabolism and expression of specific genes affect the occurrence of ferroptosis, making it a promising therapeutic target to manage cancer. Here, we describe the current status of ferroptosis studies in breast cancer and trace the key regulators of ferroptosis back to previous studies. We also compare ferroptosis to common regulated cell death patterns and discuss the sensitivity to ferroptosis in different subtypes of breast cancer. We propose that viewing ferroptosis-related studies from a historical angle will accelerate the development of ferroptosis-based biomarkers and therapeutic strategies in breast cancer.
Role of gut microbiota in doxorubicin-induced cardiotoxicity: from pathogenesis to related interventions
Doxorubicin (DOX) is a broad-spectrum and highly efficient anticancer agent, but its clinical implication is limited by lethal cardiotoxicity. Growing evidences have shown that alterations in intestinal microbial composition and function, namely dysbiosis, are closely linked to the progression of DOX-induced cardiotoxicity (DIC) through regulating the gut-microbiota-heart (GMH) axis. The role of gut microbiota and its metabolites in DIC, however, is largely unelucidated. Our review will focus on the potential mechanism between gut microbiota dysbiosis and DIC, so as to provide novel insights into the pathophysiology of DIC. Furthermore, we summarize the underlying interventions of microbial-targeted therapeutics in DIC, encompassing dietary interventions, fecal microbiota transplantation (FMT), probiotics, antibiotics, and natural phytochemicals. Given the emergence of microbial investigation in DIC, finally we aim to point out a novel direction for future research and clinical intervention of DIC, which may be helpful for the DIC patients.
The direction-dependence of apparent water exchange rate in human white matter
•The apparent water exchange rate (AXR) in FEXI shows anisotropy in human white matter.•The AXR perpendicular and parallel to fiber orientation are significantly different.•The perpendicular AXR is more sensitive to axonal water transmembrane exchange. Transmembrane water exchange is a potential biomarker in the diagnosis and understanding of cancers, brain disorders, and other diseases. Filter-exchange imaging (FEXI), a special case of diffusion exchange spectroscopy adapted for clinical applications, has the potential to reveal different physiological water exchange processes. However, it is still controversial whether modulating the diffusion encoding gradient direction can affect the apparent exchange rate (AXR) measurements of FEXI in white matter (WM) where water diffusion shows strong anisotropy. In this study, we explored the diffusion-encoding direction dependence of FEXI in human brain white matter by performing FEXI with 20 diffusion-encoding directions on a clinical 3T scanner in-vivo. The results show that the AXR values measured when the gradients are perpendicular to the fiber orientation (0.77 ± 0.13 s − 1, mean ± standard deviation of all the subjects) are significantly larger than the AXR estimates when the gradients are parallel to the fiber orientation (0.33 ± 0.14 s − 1, p < 0.001) in WM voxels with coherently-orientated fibers. In addition, no significant correlation is found between AXRs measured along these two directions, indicating that they are measuring different water exchange processes. What's more, only the perpendicular AXR rather than the parallel AXR shows dependence on axonal diameter, indicating that the perpendicular AXR might reflect transmembrane water exchange between intra-axonal and extra-cellular spaces. Further finite difference (FD) simulations having three water compartments (intra-axonal, intra-glial, and extra-cellular spaces) to mimic WM micro-environments also suggest that the perpendicular AXR is more sensitive to the axonal water transmembrane exchange than parallel AXR. Taken together, our results show that AXR measured along different directions could be utilized to probe different water exchange processes in WM.