Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,307 result(s) for "Li, Zhenzhen"
Sort by:
Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming
Cancer cells are well-known for adapting their metabolism to maintain high proliferation rates and survive in unfavorable environments with low oxygen and nutritional deficiency. Metabolic reprogramming most commonly arises from the tumor microenvironment (TME). The events of metabolic pathways include the Warburg effect, shift in Krebs cycle metabolites, and increase rate of oxidative phosphorylation that provides the energy for the development and invasion of cancer cells. The TME and shift in tumor metabolism shows a close relationship through bidirectional signaling pathways between the stromal and tumor cells. Cancer-associated fibroblasts (CAFs) are the main type of stromal cells in the TME and consist of a heterogeneous and plastic population that play key roles in tumor growth and metastatic capacity. Emerging evidence suggests that CAFs act as major regulators in shaping tumor metabolism especially through the dysregulation of several metabolic pathways, including glucose, amino acid, and lipid metabolism. The arrangement of these metabolic switches is believed to shape distinct CAF behavior and change tumor cell behavior by the CAFs. The crosstalk between cancer cells and CAFs is associated with cell metabolic reprogramming that contributes to cancer cell growth, progression, and evasion from cancer therapies. But the mechanism and process of this interaction remain unclear. This review aimed to highlight the metabolic couplings between tumor cells and CAFs. We reviewed the recent literature supporting an important role of CAFs in the regulation of cancer cell metabolism, and the relevant pathways, which may serve as targets for therapeutic interventions.
The role of metabolic reprogramming in tubular epithelial cells during the progression of acute kidney injury
Acute kidney injury (AKI) is one of the most common clinical syndromes. AKI is associated with significant morbidity and subsequent chronic kidney disease (CKD) development. Thus, it is urgent to develop a strategy to hinder AKI progression. Renal tubules are responsible for the reabsorption and secretion of various solutes and the damage to this part of the nephron is a key mediator of AKI. As we know, many common renal insults primarily target the highly metabolically active proximal tubular cells (PTCs). PTCs are the most energy-demanding cells in the kidney. The ATP that they use is mostly produced in their mitochondria by fatty acid β-oxidation (FAO). But, when PTCs face various biological stresses, FAO will shut down for a time that outlives injury. Recent studies have suggested that surviving PTCs can adapt to FAO disruption by increasing glycolysis when facing metabolic constraints, although PTCs do not perform glycolysis in a normal physiological state. Enhanced glycolysis in a short period compensates for impaired energy production and exerts partial renal-protective effects, but its long-term effect on renal function and AKI progression is not promising. Deranged FAO and enhanced glycolysis may contribute to the AKI to CKD transition through different molecular biological mechanisms. In this review, we concentrate on the recent pathological findings of AKI with regards to the metabolic reprogramming in PTCs, confirming that targeting metabolic reprogramming represents a potentially effective therapeutic strategy for the progression of AKI.
Extracellular S100A4 as a key player in fibrotic diseases
Fibrosis is characterized by fibroblast activation, extracellular matrix (ECM) accumulation and infiltration of inflammatory cells that sometimes leads to irreversible organ dysfunction. Considerable evidence now indicates that inflammation plays a critical role in the initiation and progression of organ fibrosis. S100A4 protein, a ubiquitous member of the S100 family, has recently been discovered as a potential factor implicated in fibrotic diseases. S100A4 protein is released at inflammatory site and has a certain biological function to promote cell motility, invasion, ECM remodelling, autophagy and angiogenesis. In addition, extracellular S100A4 is also a potential causation of inflammatory processes and induces the release of cytokines and growth factors under different pathological conditions. Elevated S100A4 level in patients’ serum closely correlates with disease activity in several fibrotic diseases and serves as a useful biomarker for diagnosis and monitoring disease progression. Analyses of knockout mouse models have identified a functional role of extracellular S100A4 protein in fibrotic diseases, suggesting that suppressing its expression, release or function might be a promising therapeutic strategy. This review will focus on the role of extracellular S100A4 as a key regulator of pro‐inflammatory signalling pathways and its relative biological processes involved in the pathogenesis of fibrosis.
Tetrafunctional Cu2S thin layers on Cu2O nanowires for efficient photoelectrochemical water splitting
Photoelectrochemical (PEC) water splitting by photocathodes based on p-type semiconductors is a promising process for direct and efficient hydrogen generation. The identification of ideal photocathode materials with a high photoconversion efficiency and long-term stability is still a significant challenge. Herein, we propose a new photocathode consisting of Cu2S-coated Cu2O nanowires (NWs) supported on a three-dimensional porous copper foam. The Cu2S thin layer is generated in situ on the surface of the Cu2O NWs and has four functions: (1) sensitizer, with a band gap of 1.2 eV, for extending the range of optical absorption into the near-infrared region; (2) electron trapper, with appropriate energy level alignment to Cu2O, for achieving effective electron transfer and trapping; (3) electrocatalyst, with excellent electrocatalytic activity for the hydrogen evolution reaction; and (4) protector, preventing direct contact between Cu2O and the electrolyte in order to significantly increase the stability. A photocathode based on the tetrafunctional Cu2S-coated Cu2O NWs exhibits significantly enhanced PEC performance and remarkably improved long-term stability under illumination. The present strategy, based on the in situ generation of multifunctional layers, opens a new avenue for the rational design of photocathodes for PEC water reduction.
Cascaded dissipative DNAzyme-driven layered networks guide transient replication of coded-strands as gene models
Dynamic, transient, out-of-equilibrium networks guide cellular genetic, metabolic or signaling processes. Designing synthetic networks emulating natural processes imposes important challenges including the ordered connectivity of transient reaction modules, engineering of the appropriate balance between production and depletion of reaction constituents, and coupling of the reaction modules with emerging chemical functions dictated by the networks. Here we introduce the assembly of three coupled reaction modules executing a cascaded dynamic process leading to the transient formation and depletion of three different Mg 2+ -ion-dependent DNAzymes. The transient operation of the DNAzyme in one layer triggers the dynamic activation of the DNAzyme in the subsequent layer, leading to a three-layer transient catalytic cascade. The kinetics of the transient cascade is computationally simulated. The cascaded network is coupled to a polymerization/nicking DNA machinery guiding transient synthesis of three coded strands acting as “gene models”, and to the rolling circle polymerization machinery leading to the transient synthesis of fluorescent Zn(II)-PPIX/G-quadruplex chains or hemin/G-quadruplex catalytic wires. A reaction network executing a cascaded transient formation and depletion of three different catalytic strands is introduced. The system is coupled to the secondary temporal synthesis of different coded strands as gene models.
Sensitive electrochemical nonenzymatic glucose sensing based on anodized CuO nanowires on three-dimensional porous copper foam
In this work, we proposed to utilize three-dimensional porous copper foam (CF) as conductive substrate and precursor of in-situ growth CuO nanowires (NWs) for fabricating electrochemical nonenzymatic glucose sensors. The CF supplied high surface area due to its unique three-dimensional porous foam structure and thus resulted in high sensitivity for glucose detection. The CuO NWs/CF based nonenzymatic sensors presented reliable selectivity, good repeatability, reproducibility and stability. In addition, the CuO NWs/CF based nonenzymatic sensors have been employed for practical applications and the glucose concentration in human serum was measured to be 4.96 ± 0.06 mM, agreed well with the value measured from the commercial available glucose sensor in hospital and the glucose concentration in saliva was also estimated to be 0.91 ± 0.04 mM, which indicated that the CuO NWs/CF owned the possibility for noninvasive glucose detection. The rational design of CuO NWs/CF provided an efficient strategy for fabricating of electrochemical nonenzymatic biosensors.
Prevalence of depression in patients with sarcopenia and correlation between the two diseases: systematic review and meta‐analysis
Background Depression may be the most common cause of emotional distress later in life and can significantly reduce the quality of life in elderly individuals. Sarcopenia is a syndrome characterized by the continuous loss of skeletal muscle mass and decreased strength and function. In recent years, many studies have shown a correlation between sarcopenia and depression. The present study aimed to investigate the prevalence of depression among individuals with sarcopenia and to ascertain whether sarcopenia is independently associated with depression. Methods We systematically searched the PubMed, Embase, and Google Scholar databases for papers on sarcopenia published up to 31 August 2021. We reviewed the literature on the number of individuals with sarcopenia, the number of individuals with both sarcopenia and depression, and the odds ratio (OR) of sarcopenia to depression. Statistical analyses were performed using Meta‐DiSc 1.4 software and Stata version 12.0. Results Nineteen articles met the inclusion criteria for review: nine reported both prevalence and ORs, four described prevalence only, and six detailed the ORs only. Regarding prevalence, there were 1476 cases of sarcopenia and 364 of depression in the selected studies; the mean age of the patients was 75.5 years, and the overall prevalence of depression was 0.28 [95% confidence interval (CI): 0.21–0.36]. Significant heterogeneity was noted (P < 0.001; I2 = 92.2%). In the case of ORs, there were 16 869 subjects with a mean age of 73 years; the overall adjusted OR between sarcopenia and depression was 1.57 (95% CI: 1.32–1.86). Significant heterogeneity was noted in the adjusted ORs (P < 0.001; I2 = 75.1%). Conclusions The prevalence of depression in patients with sarcopenia was high relatively, and there was a correlation between sarcopenia and depression.
Theoretical Study and Analysis of CsSnX3 (X = Cl, Br, I) All-Inorganic Perovskite Solar Cells with Different X-Site Elements
In this research, SCAPS-1D simulation software (Version: 3.3.10) was employed to enhance the efficiency of CsSnX3 (X = Cl, Br, I) all-inorganic perovskite solar cells. By fine-tuning essential parameters like the work function of the conductive glass, the back contact point, defect density, and the thickness of the light absorption layer, we effectively simulated the optimal performance of CsSnX3 (X = Cl, Br, I) all-inorganic perovskite solar cells under identical conditions. The effects of different X-site elements on the overall performance of the device were also explored. The theoretical photoelectric conversion efficiency of the device gradually increases with the successive substitution of halogen elements (Cl, Br, I), reaching 6.09%, 17.02%, and 26.74%, respectively. This trend is primarily attributed to the increasing size of the halogen atoms, which leads to better light absorption and charge transport properties, with iodine (I) yielding the highest theoretical conversion efficiency. These findings suggest that optimizing the halogen element in CsSnX3 can significantly enhance device performance, providing valuable theoretical guidance for the development of high-efficiency all-inorganic perovskite solar cells.
Association of preoperative body mass index with postoperative complications and survival for patients with gastric cancer: A systematic review and meta-analysis
The relationship among body mass index (BMI), postoperative complications, and clinical outcomes in patients undergoing gastrectomy for gastric cancer remains unclear. This study aimed to evaluate this association using a meta-analysis. We conducted a systematic search of the PubMed, Embase, and Cochrane Library databases up to February 25, 2024. Patients were classified into underweight (<18.5 kg/m2), normal weight (18.5-25.0 kg/m2), and overweight (≥25.0 kg/m2) groups based on BMI categories. Meta-analysis was performed using a random-effects model. Additionally, exploratory sensitivity and subgroup analyses were performed. Twenty-two studies involving 41,144 patients with gastric cancer were included for quantitative analysis. Preoperative underweight (odds ratio [OR]: 1.26; 95% confidence interval [CI]: 1.03-1.55; P = 0.024) and overweight (OR: 1.19; 95%CI: 1.09-1.30; P <0.001) were associated with an increased risk of postoperative complications. Furthermore, preoperative underweight was associated with poorer overall survival (hazard ratio [HR]: 1.40; 95%CI: 1.28-1.53; P <0.001), whereas preoperative overweight was associated with better over-survival (HR: 0.82; 95%CI: 0.73-0.91; P <0.001). Furthermore, preoperative underweight was not associated with disease-free survival (HR: 1.48; 95%CI: 0.97-2.26; P = 0.069), whereas preoperative overweight was associated with longer disease-free survival (HR: 0.80; 95%CI: 0.70-0.91; P = 0.001). In terms of specific postoperative complications, preoperative underweight was associated with an increased risk of septic shock (OR: 3.40; 95%CI: 1.26-9.17; P = 0.015) and a reduced risk of fever (OR: 0.39; 95%CI: 0.18-0.83; P = 0.014). Preoperative overweight was associated with an increased risk of wound infections (OR: 1.78; 95%CI: 1.08-2.93; P = 0.023), intestinal fistula (OR: 5.23; 95%CI: 1.93-14.21; P = 0.001), arrhythmia (OR: 6.38; 95%CI: 1.70-24.01; P = 0.006), and pancreatic fistula (OR: 3.37; 95%CI: 1.14-9.96; P = 0.028). This study revealed that both preoperative underweight and overweight status were associated with an increased risk of postoperative complications. Moreover, the postoperative survival outcomes were significantly better in overweight compared to that of underweight patients. Registration: INPLASY202480004.
Study on the Clinical Effects of Liposuction and Small Incision Gland Resection for the Treatment of Gynecomastia
To evaluate the clinical effectiveness of liposuction combined with small incision gland resection for treating gynecomastia. This study included 78 male patients with gynecomastia who received treatment at the Department of Orthopedic Surgery, the First Affiliated Hospital of Anhui Medical University, between August 2009 and June 2020. The patients were divided into two groups: the combined group (n = 39) underwent liposuction combined with small incision gland resection, while the open group (n = 39) underwent open surgical resection alone. The two groups were compared in terms of incision length, postoperative complications, postoperative scarring, and patient satisfaction. Both groups showed significant improvements in appearance. However, the combined group had fewer postoperative complications, significantly better incision length, and patient satisfaction than the open group (P < .05). Liposuction combined with small incision gland resection is a precise, less invasive, and less complicated surgical treatment option for gynecomastia, with hidden scars and high patient satisfaction. This approach should be promoted as a preferred treatment method.