Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
412 result(s) for "Li, Zhibing"
Sort by:
SIRT6 protects vascular smooth muscle cells from osteogenic transdifferentiation via Runx2 in chronic kidney disease
Vascular calcification (VC) is regarded as an important pathological change lacking effective treatment and associated with high mortality. Sirtuin 6 (SIRT6) is a member of the Sirtuin family, a class III histone deacetylase and a key epigenetic regulator. SIRT6 has a protective role in patients with chronic kidney disease (CKD). However, the exact role and molecular mechanism of SIRT6 in VC in patients with CKD remain unclear. Here, we demonstrated that SIRT6 was markedly downregulated in peripheral blood mononuclear cells (PBMCs) and in the radial artery tissue of patients with CKD with VC. SIRT6-transgenic (SIRT6-Tg) mice showed alleviated VC, while vascular smooth muscle cell-specific (VSMC-specific) SIRT6 knocked-down mice showed severe VC in CKD. SIRT6 suppressed the osteogenic transdifferentiation of VSMCs via regulation of runt-related transcription factor 2 (Runx2). Coimmunoprecipitation (co-IP) and immunoprecipitation (IP) assays confirmed that SIRT6 bound to Runx2. Moreover, Runx2 was deacetylated by SIRT6 and further promoted nuclear export via exportin 1 (XPO1), which in turn caused degradation of Runx2 through the ubiquitin-proteasome system. These results demonstrated that SIRT6 prevented VC by suppressing the osteogenic transdifferentiation of VSMCs, and as such targeting SIRT6 may be an appealing therapeutic target for VC in CKD.
Friction Compensation Control of Electromechanical Actuator Based on Neural Network Adaptive Sliding Mode
In this paper, a radial basis neural network adaptive sliding mode controller (RBF−NN ASMC) for nonlinear electromechanical actuator systems is proposed. The radial basis function neural network (RBF−NN) control algorithm is used to compensate for the friction disturbance torque in the electromechanical actuator system. An adaptive law was used to adjust the weights of the neural network to achieve real−time compensation of friction. The sliding mode controller is designed to suppress the model uncertainty and external disturbance effects of the electromechanical actuator system. The stability of the RBF−NN ASMC is analyzed by Lyapunov’s stability theory, and the effectiveness of this method is verified by simulation. The results show that the control strategy not only has a better compensation effect on friction but also has better anti−interference ability, which makes the electromechanical actuator system have better steady−state and dynamic performance.
A New Quaternion-Based Kalman Filter for Human Body Motion Tracking Using the Second Estimator of the Optimal Quaternion Algorithm and the Joint Angle Constraint Method with Inertial and Magnetic Sensors
Human body motion tracking is a key technique in robotics, virtual reality and other human–computer interaction fields. This paper proposes a novel simple-structure Kalman filter to improve the accuracy of human body motion tracking, named the Second EStimator of the Optimal Quaternion Kalman Filter (E2QKF). The new algorithm is the combination of the Second Estimator of the Optimal Quaternion (ESOQ-2) algorithm, the linear Kalman filter and the joint angle constraint method. In the proposed filter, the ESOQ-2 algorithm is used to produce an observation quaternion by preprocessing accelerometer and magnetometer measurements. The compensation for the accelerometer added in the ESOQ-2 algorithm is to eliminate the influence of human body motion acceleration included in the results. The state vector of the filter is the quaternion, which is calculated with gyroscope measurements, and the Kalman filter is to calculate the optimal quaternion by fusing the state quaternion and the observation quaternion. Therefore, the filter becomes a simple first-order linear system model, which avoids the linearization error of measurement equations and reduces the computational complexity. Furthermore, the joint angle constraint is considered in the proposed algorithm, which makes the results more accurate. To verify the accuracy of the proposed algorithm, inertial/magnetic sensors are used to perform the upper limb motion experiment, and the result of E2QKF (without joint angle constraint) is compared with an optical motion capture system and two traditional methods. Test results demonstrate the effectiveness of the proposed filter: the root mean square error (RMSE) of E2QKF is less than 2.0° and the maximum error is less than 4.6°. The result of E2QKF (with joint angle constraint) is compared with E2QKF (without joint angle constraint). Test results demonstrate the superiority of E2QKF (with joint angle constraint): the joint angle constraint method can further improve the accuracy of human body motion tracking.
Surface Modification via Dielectric Barrier Discharge Atmospheric Cold Plasma (DBD–ACP): Improved Functional Properties of Soy Protein Film
Atmospheric cold plasma (ACP), a novel technology, has been widely adopted as an efficient approach in surface modification of the film. The effect of ACP treatment on the physicochemical and structural properties of soy protein film were investigated. As a result, the optimal conditions for the preparation of the film were determined for soy protein (10%), glycerol (2.8%), ACP treatment at 30 kV for 3 min, on the basis of elongation at the break, and water vapor permeability. Under the optimal conditions, the ACP–treated films exhibited enhanced polarity according to the increased values of solubility, swelling index, and moisture content, compared with the untreated counterpart. An increase in the hydrophilicity is also confirmed by the water contact angle analysis, which decreased from 87.9° to 77.2° after ACP pretreatment. Thermostability was also improved by ACP exposure in terms of DSC analysis. SEM images confirmed the tiny pores and cracks on the surface of film could be lessened by ACP pretreatment. Variations in the Fourier transform infrared spectroscopy indicated that some hydrophilic groups were formed by ACP pretreatment. Atomic force microscopy data revealed that the roughness of soy protein film which was pretreated by ACP was lower than that of the control group, with an Rmax value of 88.4 nm and 162.7 nm for the ACP- treated and untreated samples, respectively. The soy protein film was characterized structurally by FT–IR and DSC, and morphological characterization was done by SEM and AFM. The soy protein film modified by ACP was more stable than the control group. Hence, the great potential in improving the properties of the film enables ACP treatment to be a feasible and promising alternative to other modification methods.
Phonon Pseudoangular Momentum in α-MoO3
In recent studies, it has been discovered that phonons can carry angular momentum, leading to a series of investigations into systems with three-fold rotation symmetry. However, for systems with two-fold screw rotational symmetry, such as α-MoO3, there has been no relevant discussion. In this paper, we investigated the pseudoangular momentum of phonons in crystals with two-fold screw rotational symmetry. Taking α-MoO3 as an example, we explain the selection rules in circularly polarized Raman experiments resulting from pseudoangular momentum conservation, providing important guidance for experiments. This study of pseudoangular momentum in α-MoO3 opens up a new degree of freedom for its potential applications, expanding into new application domains.
Cold Cathodes with Two-Dimensional van der Waals Materials
Two-dimensional van der Waals materials could be used as electron emitters alone or stacked in a heterostructure. Many significant phenomena of two-dimensional van der Waals field emitters have been observed and predicted since the landmark discovery of graphene. Due to the wide variety of heterostructures that integrate an atomic monolayer or multilayers with insulator nanofilms or metallic cathodes by van der Waals force, the diversity of van der Waals materials is large to be chosen from, which are appealing for further investigation. Until now, increasing the efficiency, stability, and uniformity in electron emission of cold cathodes with two-dimensional materials is still of interest in research. Some novel behaviors in electron emission, such as coherence and directionality, have been revealed by the theoretical study down to the atomic scale and could lead to innovative applications. Although intensive emission in the direction normal to two-dimensional emitters has been observed in experiments, the theoretical mechanism is still incomplete. In this paper, we will review some late progresses related to the cold cathodes with two-dimensional van der Waals materials, both in experiments and in the theoretical study, emphasizing the phenomena which are absent in the conventional cold cathodes. The review will cover the fabrication of several kinds of emitter structures for field emission applications, the state of the art of their field emission properties and the existing field emission model. In the end, some perspectives on their future research trend will also be given.
An Improved Two-Shot Tracking Algorithm for Dynamics Analysis of Natural Killer Cells in Tumor Contexts
Natural killer cells (NKCs) are non-specific immune lymphocytes with diverse morphologies. Their broad killing effect on cancer cells has led to increased attention towards activating NKCs for anticancer immunotherapy. Consequently, understanding the motion characteristics of NKCs under different morphologies and modeling their collective dynamics under cancer cells has become crucial. However, tracking small NKCs in complex backgrounds poses significant challenges, and conventional industrial tracking algorithms often perform poorly on NKC tracking datasets. There remains a scarcity of research on NKC dynamics. In this paper, we utilize deep learning techniques to analyze the morphology of NKCs and their key points. After analyzing the shortcomings of common industrial multi-object tracking algorithms like DeepSORT in tracking natural killer cells, we propose Distance Cascade Matching and the Re-Search method to improve upon existing algorithms, yielding promising results. Through processing and tracking over 5000 frames of images, encompassing approximately 300,000 cells, we preliminarily explore the impact of NKCs’ cell morphology, temperature, and cancer cell environment on NKCs’ motion, along with conducting basic modeling. The main conclusions of this study are as follows: polarized cells are more likely to move along their polarization direction and exhibit stronger activity, and the maintenance of polarization makes them more likely to approach cancer cells; under equilibrium, NK cells display a Boltzmann distribution on the cancer cell surface.
Age structure and body size of two Tibetan toad (Bufo tibetanus) populations from different elevations in China
Understanding how age and body size vary across elevations can provide insights into the evolution of life‐history traits in animals. In the present study, we compared the demographic (using skeletochronology) and morphological traits of the Tibetan toad (Bufo tibetanus) between two populations from different elevational habitats (2650 vs. 3930 m). We found that (1) the mean age and body size of females were significantly greater than those of males in both populations; (2) both sexes of toads from the higher elevation tended to be significantly older in age and larger in body size; (3) there was a significant positive relationship between age and body size within each sex of the toad at both elevations; and (4) growth rates varied between the two populations, with the higher rate observed in the lower‐elevation population. Our results suggested that factors other than age, such as elevation‐associated temperature, influence the observed differences in body size between the two populations. Future research at a broader range of elevations should focus on these factors and evaluate their influence on animal growth patterns. Life‐history traits, such as age and body size, can evolve in response to climate variations along elevational gradients. We found the Tibetan toad (Bufo tibetanus) exhibits a slow life history at high elevations, with females being older and larger than males, and individuals from higher elevations being older and larger than those from lower elevations. This suggests that factors other than age, such as elevation‐associated temperature, can influence latitudinal patterns in body size.
Field-to-View Constrained Integrated Guidance and Control for Hypersonic Homing Missiles Intercepting Supersonic Maneuvering Targets
An integrated guidance and control (IGC) scheme considering the field-of-view (FOV) constraint is proposed in this paper for hypersonic skid-to-turn (STT) missiles with a strapdown seeker intercepting a high-speed maneuvering target, which is based on the backstepping control (BC), barrier Lyapunov function (BLF), sliding mode control (SMC), dynamic surface control (DSC), and reduced-order extended state observer (ESO). First, a fifth-order strict feedback IGC model considering the rudder delay dynamics is derived, which also considers the drag effect on the axial velocity. Second, the missile guidance control system based on the BC consists of seeker, guidance, angle-of-attack, attitude, and rudder subsystems. The seeker subsystem was designed based on the BLF, and the other four subsystems were designed based on the SMC. The system-lumped disturbances, including unknown target maneuvers, unmodeled parts, perturbations caused by aerodynamic parameter variations, and external disturbances, were estimated and compensated for using the reduced-order ESO. The DSC prevented the “differential explosion” caused by virtual control commands introduced by the BC. Subsequently, the stability of the closed-loop system was strictly proven using the Lyapunov theory, and the boundedness of the FOV angle was strictly derived. Finally, the simulation results demonstrated the effectiveness and robustness of the proposed IGC scheme.
Dynamic Characteristics of Transverse-Magnetic-Field Induced Arc for Plasma-Jet-Triggered Protective Gas Switch in Hybrid UHVDC System
A plasma jet-triggered gas switch (PJT-GS) has been developed as an important piece of equipment to operate in an ±800 kV ultra-high voltage direct current transmission system (UHV DC) to achieve grid system protection and control. The crucial factors that would affect its operational performance, such as the current level the PJT-GS could withstand and the gas gap distance between the two rotating electrodes, are comparatively studied in the present work by analysing the arc dynamic characteristics. The rotating electrode used in the PJT-GS is designed with a helical-slotted structure, and the arc can be rotated circularly driven by the produced transverse magnetic field (TMF) along the electrode edge. The objective of such research is to provide a thorough study of the arc dynamic behaviour during the current flowing process of the PJT-GS and also to characterise the physical mechanism that affects the arc rotation and the PJT-GS operation performance. The magnetohydrodynamic-based (MHD) approach is applied by establishing a 3D arc model. Following such a study, the variation of arc characteristics under different operation conditions could be thoroughly determined and it also could provide the guidance for the PJT-GS optimum design reasonably to support its corresponding engineering applications.