Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,161 result(s) for "Li, Zhipeng"
Sort by:
Immunomodulation in the Treatment of Periodontitis: Progress and Perspectives
Periodontitis is one of the most common dental diseases. Compared with healthy periodontal tissues, the immune microenvironment plays the key role in periodontitis by allowing the invasion of pathogens. It is possible that modulating the immune microenvironment can supplement traditional treatments and may even promote periodontal regeneration by using stem cells, bacteria, etc. New anti-inflammatory therapies can enhance the generation of a viable local immune microenvironment and promote cell homing and tissue formation, thereby achieving higher levels of immune regulation and tissue repair. We screened recent studies to summarize the advances of the immunomodulatory treatments for periodontitis in the aspects of drug therapy, microbial therapy, stem cell therapy, gene therapy and other therapies. In addition, we included the changes of immune cells and cytokines in the immune microenvironment of periodontitis in the section of drug therapy so as to make it clearer how the treatments took effects accordingly. In the future, more research needs to be done to improve immunotherapy methods and understand the risks and long-term efficacy of these methods in periodontitis.
Reference coordinate based Chan algorithm for UWB personnel localization in underground coal mines
Ultra-wideband (UWB) positioning in coal mines faces severe accuracy degradation due to non-line-of-sight (NLOS) errors. To address this, we propose the Chan Based on Reference Coordinate (CBORF) algorithm, which integrates dynamic error compensation and adaptive parameter tuning to achieve centimeter-level accuracy with minimal computational overhead. Unlike existing methods (e.g., Chan-Taylor, Kalman-Chan), CBORF introduces a reference label-guided correction mechanism, statistically analyzing deviations between estimated and actual reference coordinates to compensate for systemic offset and dispersion errors. Simulations under exponential-distributed NLOS noise demonstrate CBORF’s superiority: RMSE of 0.026 m (stationary) and 0.075 m (moving targets), outperforming Chan (0.48 m) and Taylor (0.38 m) by 1–2 orders of magnitude. It also maintains the efficiency of the Chan algorithm and avoids iterative filtering (e.g., particle resampling in PF-Chan), which is a significant advantage over other algorithms. This work advances the state-of-the-art by resolving the long-standing trade-off between accuracy and computational complexity in NLOS-prone environments. Unlike filtering-dependent approaches (e.g., PF-Chan, Kalman-Chan), CBORF eliminates the need for iterative particle resampling or linear-Gaussian assumptions, ensuring reliability in high-noise, nonlinear conditions. Its parameter-driven design further enhances adaptability across diverse underground layouts, offering a practical and scalable solution for real-time personnel tracking in coal mines.
Ammonia for post-healing of formamidinium-based Perovskite films
Solvents employed for perovskite film fabrication not only play important roles in dissolving the precursors but also participate in crystallization process. High boiling point aprotic solvents with O-donor ligands have been extensively studied, but the formation of a highly uniform halide perovskite film still requires the participation of additives or an additional step to accelerate the nucleation rate. The volatile aliphatic methylamine with both coordinating ligands and hydrogen protons as solvent or post-healing gas facilitates the process of methylamine-based perovskite films with high crystallinity, few defects, and easy large-scale fabrication as well. However, the attempt in formamidinium-containing perovskites is challenged heretofore. Here, we reveal that the degradation of formamidinium-containing perovskites in aliphatic amines environment results from the transimination reaction of formamidinium cation and aliphatic amines along with the formation of ammonia. Based on this mechanism, ammonia is selected as a post-healing gas for a highly uniform, compact formamidinium-based perovskite films. In particular, low temperature is proved to be crucial to enable formamidinium-based perovskite materials to absorb enough ammonia molecules and form a liquid intermediate state which is the key to eliminating voids in raw films. As a result, the champion perovskite solar cell based on ammonia post-healing achieves a power conversion efficiency of 23.21% with excellent reproducibility. Especially the module power conversion efficiency with 14 cm 2 active area is over 20%. This ammonia post-healing treatment potentially makes it easier to upscale fabrication of highly efficient formamidinium-based devices. Solvents used for perovskite film fabrication not only dissolve the precursors but also play a role in the crystallization process. Here, authors study the role of transamination reactions in the underlying degradation mechanism of formamidinium-containing perovskites in aliphatic amines environment.
Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction
Wearable strain sensors that detect joint/muscle strain changes become prevalent at human–machine interfaces for full-body motion monitoring. However, most wearable devices cannot offer customizable opportunities to match the sensor characteristics with specific deformation ranges of joints/muscles, resulting in suboptimal performance. Adequate wearable strain sensor design is highly required to achieve user-designated working windows without sacrificing high sensitivity, accompanied with real-time data processing. Herein, wearable Ti 3 C 2 T x MXene sensor modules are fabricated with in-sensor machine learning (ML) models, either functioning via wireless streaming or edge computing, for full-body motion classifications and avatar reconstruction. Through topographic design on piezoresistive nanolayers, the wearable strain sensor modules exhibited ultrahigh sensitivities within the working windows that meet all joint deformation ranges. By integrating the wearable sensors with a ML chip, an edge sensor module is fabricated, enabling in-sensor reconstruction of high-precision avatar animations that mimic continuous full-body motions with an average avatar determination error of 3.5 cm, without additional computing devices. Wearable sensors with edge computing are desired for human motion monitoring. Here, the authors demonstrate a topographic design for wearable MXene sensor modules with wireless streaming or in-sensor computing models for avatar reconstruction.
Safety Helmet Detection Based on YOLOv5 Driven by Super-Resolution Reconstruction
High-resolution image transmission is required in safety helmet detection problems in the construction industry, which makes it difficult for existing image detection methods to achieve high-speed detection. To overcome this problem, a novel super-resolution (SR) reconstruction module is designed to improve the resolution of images before the detection module. In the super-resolution reconstruction module, the multichannel attention mechanism module is used to improve the breadth of feature capture. Furthermore, a novel CSP (Cross Stage Partial) module of YOLO (You Only Look Once) v5 is presented to reduce information loss and gradient confusion. Experiments are performed to validate the proposed algorithm. The PSNR (peak signal-to-noise ratio) of the proposed module is 29.420, and the SSIM (structural similarity) reaches 0.855. These results show that the proposed model works well for safety helmet detection in construction industries.
The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis
Ferroptosis is a form of regulated cell death that is caused by the iron-dependent peroxidation of lipids 1 , 2 . The glutathione-dependent lipid hydroperoxidase glutathione peroxidase 4 (GPX4) prevents ferroptosis by converting lipid hydroperoxides into non-toxic lipid alcohols 3 , 4 . Ferroptosis has previously been implicated in the cell death that underlies several degenerative conditions 2 , and induction of ferroptosis by the inhibition of GPX4 has emerged as a therapeutic strategy to trigger cancer cell death 5 . However, sensitivity to GPX4 inhibitors varies greatly across cancer cell lines 6 , which suggests that additional factors govern resistance to ferroptosis. Here, using a synthetic lethal CRISPR–Cas9 screen, we identify ferroptosis suppressor protein 1 (FSP1) (previously known as apoptosis-inducing factor mitochondrial 2 (AIFM2)) as a potent ferroptosis-resistance factor. Our data indicate that myristoylation recruits FSP1 to the plasma membrane where it functions as an oxidoreductase that reduces coenzyme Q 10 (CoQ) (also known as ubiquinone-10), which acts as a lipophilic radical-trapping antioxidant that halts the propagation of lipid peroxides. We further find that FSP1 expression positively correlates with ferroptosis resistance across hundreds of cancer cell lines, and that FSP1 mediates resistance to ferroptosis in lung cancer cells in culture and in mouse tumour xenografts. Thus, our data identify FSP1 as a key component of a non-mitochondrial CoQ antioxidant system that acts in parallel to the canonical glutathione-based GPX4 pathway. These findings define a ferroptosis suppression pathway and indicate that pharmacological inhibition of FSP1 may provide an effective strategy to sensitize cancer cells to ferroptosis-inducing chemotherapeutic agents. A synthetic lethal CRISPR–Cas9 screen identifies ferroptosis suppressor protein 1 as a key ferroptosis-resistance factor, the expression of which correlates with ferroptosis resistance in hundreds of cancer cell lines.
Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2
Strong Coulomb interactions in single-layer transition metal dichalcogenides (TMDs) result in the emergence of strongly bound excitons, trions, and biexcitons. These excitonic complexes possess the valley degree of freedom, which can be exploited for quantum optoelectronics. However, in contrast to the good understanding of the exciton and trion properties, the binding energy of the biexciton remains elusive, with theoretical calculations and experimental studies reporting discrepant results. In this work, we resolve the conflict by employing low-temperature photoluminescence spectroscopy to identify the biexciton state in BN-encapsulated single-layer WSe 2 . The biexciton state only exists in charge-neutral WSe 2 , which is realized through the control of efficient electrostatic gating. In the lightly electron-doped WSe 2 , one free electron binds to a biexciton and forms the trion–exciton complex. Improved understanding of the biexciton and trion–exciton complexes paves the way for exploiting the many-body physics in TMDs for novel optoelectronics applications. Owing to strong Coulomb interactions, atomically thin transition metal dichalcogenides host strongly bound excitonic complexes. Here, the authors report charge-neutral biexciton and negatively charged trion-exciton complexes in hBN encapsulated monolayer WSe 2 by employing low-temperature photoluminescence spectroscopy.
Progress and perspectives in dielectric energy storage ceramics
Dielectric ceramic capacitors, with the advantages of high power density, fast charge-discharge capability, excellent fatigue endurance, and good high temperature stability, have been acknowledged to be promising candidates for solid-state pulse power systems. This review investigates the energy storage performances of linear dielectric, relaxor ferroelectric, and antiferroelectric from the viewpoint of chemical modification, macro/microstructural design, and electrical property optimization. Research progress of ceramic bulks and films for Pb-based and/or Pb-free systems is summarized. Finally, we propose the perspectives on the development of energy storage ceramics for pulse power capacitors in the future.
Impact of detection rate and preventive treatment of latent tuberculosis infection on the future burden of tuberculosis among students in shanghai: a predictive study using Markov modeling
Background Students represent a key demographic for tuberculosis (TB) control in China. This study utilizes a dynamic Markov model to forecast the epidemiological trends of active tuberculosis (ATB) among students in Shanghai through 2035 and evaluate the effectiveness of different control strategies. Methods A Markov model incorporating six distinct states of TB transmission was utilized to simulate disease dynamics within a hypothetical cohort of 100,000 individuals. The model assessed the prevalence of latent tuberculosis infection (LTBI) and ATB, categorizing the cases based on whether they received the recommended treatment regimen. Results Under the current measures without any additional interventions, the model projected a marginal decline in ATB prevalence. Specifically, ATB prevalence is predicted to decrease to 14.80 per 100,000 by 2035. With an increase in tuberculosis preventive treatment (TPT) coverage to 20%, 50%, or 80%, the reductions in ATB prevalence were modest. When the detection rate of LTBI was fixed at 12% and combined with TPT coverage levels of 20%, 50%, and 80%, the reductions in ATB prevalence were 17.01%, 36.56%, and 50.68% respectively. Increasing the detection rate of LTBI to 35% alongside TPT coverages of 20%, 50%, and 80% led to more pronounced declines in ATB prevalence, at 40.95%, 69.36%, and 80.46% respectively. Conclusions Under the current TB control measures, the prevalence of ATB among students would result in only marginal decline trajectories through 2035, falling substantially short of achieving the strategic goal of ending TB. Enhanced strategies that simultaneously increase detection rates and coverage of TPT are likely to significantly reduce ATB prevalence in this population.