Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
73 result(s) for "Licastro, Danilo"
Sort by:
TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis
Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS) triggered by autoimmune mechanisms. Microglia are critical for the clearance of myelin debris in areas of demyelination, a key step to allow remyelination. TREM2 is expressed by microglia and promotes microglial survival, proliferation, and phagocytic activity. Herein we demonstrate that TREM2 was highly expressed on myelin-laden phagocytes in active demyelinating lesions in the CNS of subjects with MS. In gene expression studies, macrophages from subjects with TREM2 genetic deficiency displayed a defect in phagocytic pathways. Treatment with a new TREM2 agonistic antibody promoted the clearance of myelin debris in the cuprizone model of CNS demyelination. Effects included enhancement of myelin uptake and degradation, resulting in accelerated myelin debris removal by microglia. Most importantly, antibody-dependent TREM2 activation on microglia increased density of oligodendrocyte precursors in areas of demyelination, as well as the formation of mature oligodendrocytes thus enhancing remyelination and axonal integrity. These results are relevant as they propose TREM2 on microglia as a potential new target to promote remyelination.
SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma
To investigate the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the immune population, we coincupi bated the authentic virus with a highly neutralizing plasma from a COVID-19 convalescent patient. The plasma fully neutralized the virus for seven passages, but, after 45 d, the deletion of F140 in the spike N-terminal domain (NTD) N3 loop led to partial breakthrough. At day 73, an E484K substitution in the receptor-binding domain (RBD) occurred, followed, at day 80, by an insertion in the NTD N5 loop containing a new glycan sequon, which generated a variant completely resistant to plasma neutralization. Computational modeling predicts that the deletion and insertion in loops N3 and N5 prevent binding of neutralizing antibodies. The recent emergence in the United Kingdom, South Africa, Brazil, and Japan of natural variants with similar changes suggests that SARS-CoV-2 has the potential to escape an effective immune response and that vaccines and antibodies able to control emerging variants should be developed.
Age-dependent regulation of ELP1 exon 20 splicing in Familial Dysautonomia by RNA Polymerase II kinetics and chromatin structure
Familial Dysautonomia (FD) is a rare disease caused by ELP1 exon 20 skipping. Here we clarify the role of RNA Polymerase II (RNAPII) and chromatin on this splicing event. A slow RNAPII mutant and chromatin-modifying chemicals that reduce the rate of RNAPII elongation induce exon skipping whereas chemicals that create a more relaxed chromatin exon inclusion. In the brain of a mouse transgenic for the human FD-ELP1 we observed on this gene an age-dependent decrease in the RNAPII density profile that was most pronounced on the alternative exon, a robust increase in the repressive marks H3K27me3 and H3K9me3 and a decrease of H3K27Ac, together with a progressive reduction in ELP1 exon 20 inclusion level. In HEK 293T cells, selective drug-induced demethylation of H3K27 increased RNAPII elongation on ELP1 and SMN2, promoted the inclusion of the corresponding alternative exons, and, by RNA-sequencing analysis, induced changes in several alternative splicing events. These data suggest a co-transcriptional model of splicing regulation in which age-dependent changes in H3K27me3/Ac modify the rate of RNAPII elongation and affect processing of ELP1 alternative exon 20.
Viral priming of cell intrinsic innate antiviral signaling by the unfolded protein response
The innate response to a pathogen is critical in determining the outcome of the infection. However, the interplay of different cellular responses that are activated following viral infection and their contribution to innate antiviral signalling has not been clearly established. This work shows that flaviviruses, including Dengue, Zika, West Nile and Tick-borne encephalitis viruses, activate the unfolded protein response before transcription of interferon regulatory factor 3 induced genes. Infection in conditions of unfolded protein response priming leads to early activation of innate antiviral responses and cell intrinsic inhibition of viral replication, which is interferon regulatory factor 3 dependent. These results demonstrate that the unfolded protein response is not only a physiological reaction of the cell to viral infection, but also synergizes with pattern recognition sensing to mount a potent antiviral response. Innate immune responses are essential in the control of flavivirus infection. Here, the authors provide evidence that the unfolded protein response and the pattern recognition receptor pathways synergize to orchestrate innate antiviral responses and cell intrinsic inhibition of viral replication, a process mediated by IRF3.
In vivo microbiome and associated immune markers: New insights into the pathogenesis of vaginal dysbiosis
The microbiota fulfils a key role in the training and function of the immune system, which contributes to the symbiosis between the host and complex microbial communities. In this study, we characterized the interplay between vaginal bacteria and local immune mediators during dysbiosis in selected women of reproductive age who were grouped according to Nugent’s criteria. The abundance of Gardnerella vaginalis and Bifidobacterium breve was increased in the intermediate dysbiotic status, while the presence of a plethora of non-resident bacteria characterized the group with overt vaginosis. In response to these increases, the anti-inflammatory IL1ra and pro-inflammatory IL2 increased, while the embryo trophic factors FGFβ and GMCSF decreased compared to the healthy milieu. A specific pattern, including IL1α, IL1β, IL8, MIG, MIP1α and RANTES, distinguished the intermediate group from the vaginosis group, while IL5 and IL13, which are secreted by Th2 cells, were significantly associated with the perturbation of the commensals Lactobacilli , Gardnerella and Ureaplasma . Summarizing, we postulate that although the dysbiotic condition triggers a pro-inflammatory process, the presence of a steady state level of Th2 may influence clinical manifestations. These results raise clinically relevant questions regarding the use of vaginal immunological markers as efficacious tools to monitor microbial alterations.
The reference genome of the human diploid cell line RPE-1
Recent technological advances have facilitated the assembly of telomere-to-telomere (T2T) genomes. The current T2T CHM13 showcases the complete architecture of the human genome, yet its use in functional experiments is limited by discrepancies with the actual genome of the specific biological system under study. Access to reference assemblies for experimentally relevant cell lines is therefore essential in advancing sequencing-based analyses and precise manipulation, particularly in highly variable regions such as centromeres. Here, we present RPE1v1.1, the near-complete diploid genome assembly of the hTERT RPE-1 cell line, a non-cancerous human retinal epithelial model with a stable karyotype. Using high-coverage Pacific Biosciences and Oxford Nanopore Technologies long-read sequencing, we generate a high-quality de novo assembly, validate it through multiple methods, and phase it by integrating high-throughput chromosome conformation capture (Hi-C) data. Our assembly includes chromosome-level scaffolds that span centromeres for all chromosomes. Comparing both haplotypes with the CHM13 genome, we detect haplotype-specific genomic variations, including the translocation between chromosome 10 and chromosome X t(X;10)(X q 28;10 q 21.2) characteristic of RPE-1 cells, and divergence peaking at centromeres. Altogether, the RPE1v1.1 genome provides a reference-quality diploid assembly of a widely used cell line, supporting high-precision genetic and epigenetic studies in this model system. The authors present a diploid reference-quality genome assembly of the widely used cell line RPE-1, revealing heightened variation between haplotypes and other human genomes at centromeres. The availability of a reference genome matching the cell line under study promises a new era of high-precision haplotype-resolved functional genomics.
Learning machine approach reveals microbial signatures of diet and sex in dog
The characterization of the microbial population of many niches of the organism, as the gastrointestinal tract, is now possible thanks to the use of high-throughput DNA sequencing technique. Several studies in the companion animals field already investigated faecal microbiome in healthy or affected subjects, although the methodologies used in the different laboratories and the limited number of animals recruited in each experiment does not allow a straight comparison among published results. In the present study, we report data collected from several in house researches carried out in healthy dogs, with the aim to seek for a variability of microbial taxa in the faeces, caused by factors such as diet and sex. The database contains 340 samples from 132 dogs, collected serially during dietary intervention studies. The procedure of samples collection, storage, DNA extraction and sequencing, bioinformatic and statistical analysis followed a standardized pipeline. Microbial profiles of faecal samples have been analyzed applying dimensional reduction discriminant analysis followed by random forest analysis to the relative abundances of genera in the feces as variables. The results supported the responsiveness of microbiota at a genera taxonomic level to dietary factor and allowed to cluster dogs according this factor with high accuracy. Also sex factor clustered dogs, with castrated males and spayed females forming a separated group in comparison to intact dogs, strengthening the hypothesis of a bidirectional interaction between microbiota and endocrine status of the host. The findings of the present analysis are promising for a better comprehension of the mechanisms that regulate the connection of the microorganisms living the gastrointestinal tract with the diet and the host. This preliminary study deserves further investigation for the identification of the factors affecting faecal microbiome in dogs.
Pathobiomes Revealed that Pseudomonas fuscovaginae and Sarocladium oryzae Are Independently Associated with Rice Sheath Rot
Rice sheath rot has been mainly associated with the bacterial pathogen Pseudomonas fuscovaginae and in some cases to the fungal pathogen Sarocladium oryzae; it is yet unclear if they are part of a complex disease. The bacterial and fungal community associated with rice sheath rot symptomatic and asymptomatic rice plants was determined/studied with the main aim to shed light on the pathogen(s) causing rice sheath rot. Plant samples were collected from different rice varieties in two locations (highland and lowland) in two rice-growing seasons (wet and dry season) in Burundi. Our results showed that the bacterial Pseudomonas genus was prevalent in highland in both rice-growing seasons and was not affected by rice plant varieties. Pseudomonas sequence reads displayed a significant high similarity to Pseudomonas fuscovaginae indicating that it is the causal agent of rice sheath rot as previously reported. The fungal Sarocladium genus was on the other hand prevalent in lowland only in the wet season; the sequence reads were most significantly similar to Sarocladium oryzae. These studies showed that plant microbiome analysis is very useful in determining the microorganisms involved in a plant disease. P. fuscovaginae and S. oryzae were prevalent in symptomatic samples in highland and lowland respectively being present independently and hence are not part of a complex disease. The significant presence of other bacterial and fungal taxa in symptomatic samples is also discussed possibly making this disease more complex. Finally, we also report the microbial communities that are associated with the plant sheath in symptomatic and asymptomatic plants from the same rice fields.
Apple Derived Exosomes Improve Collagen Type I Production and Decrease MMPs during Aging of the Skin through Downregulation of the NF-κB Pathway as Mode of Action
Skin ageing is strictly related to chronic inflammation of the derma and the decay of structural proteins of the extracellular matrix. Indeed, it has become common practice to refer to this phenomenon as inflammageing. Biotech innovation is always in search of new active principles that induce a youthful appearance. In this paper, apple-derived nanovesicles (ADNVs) were investigated as novel anti-inflammatory compounds, which are able to alter the extracellular matrix production of dermal fibroblasts. Total RNA sequencing analysis revealed that ADNVs negatively influence the activity of Toll-like Receptor 4 (TLR4), and, thus, downregulate the NF-κB pro-inflammatory pathway. ADNVs also reduce extracellular matrix degradation by increasing collagen synthesis (COL3A1, COL1A2, COL8A1 and COL6A1) and downregulating metalloproteinase production (MMP1, MMP8 and MMP9). Topical applications for skin regeneration were evaluated by the association of ADNVs with hyaluronic-acid-based hydrogel and patches.
Therapeutic activity of modified U1 core spliceosomal particles
Modified U1 snRNAs bound to intronic sequences downstream of the 5′ splice site correct exon skipping caused by different types of mutations. Here we evaluate the therapeutic activity and structural requirements of these exon-specific U1 snRNA (ExSpeU1) particles. In a severe spinal muscular atrophy, mouse model, ExSpeU1, introduced by germline transgenesis, increases SMN2 exon 7 inclusion, SMN protein production and extends life span. In vitro , RNA mutant analysis and silencing experiments show that while U1A protein is dispensable, the 70K and stem loop IV elements mediate most of the splicing rescue activity through improvement of exon and intron definition. Our findings indicate that precise engineering of the U1 core spliceosomal RNA particle has therapeutic potential in pathologies associated with exon-skipping mutations. Modification of the spliceosome is being tested as a potential therapy for exon-skipping diseases, such as spinal muscular atrophy (SMA). Here the authors show that 70K and stem loop IV structural elements of a modified U1 particle are essential for splicing enhancement and effective treatment of SMA mice.