Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
82 result(s) for "Lichtenstein, Lee"
Sort by:
Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma
PD-1 blockade has transformed the management of advanced clear cell renal cell carcinoma (ccRCC), but the drivers and resistors of the PD-1 response remain incompletely elucidated. Here, we analyzed 592 tumors from patients with advanced ccRCC enrolled in prospective clinical trials of treatment with PD-1 blockade by whole-exome and RNA sequencing, integrated with immunofluorescence analysis, to uncover the immunogenomic determinants of the therapeutic response. Although conventional genomic markers (such as tumor mutation burden and neoantigen load) and the degree of CD8 + T cell infiltration were not associated with clinical response, we discovered numerous chromosomal alterations associated with response or resistance to PD-1 blockade. These advanced ccRCC tumors were highly CD8 + T cell infiltrated, with only 27% having a non-infiltrated phenotype. Our analysis revealed that infiltrated tumors are depleted of favorable PBRM1 mutations and enriched for unfavorable chromosomal losses of 9p21.3, as compared with non-infiltrated tumors, demonstrating how the potential interplay of immunophenotypes with somatic alterations impacts therapeutic efficacy. A pooled genetic, transcriptomic and immunopathologic analysis of over 500 tumors from patients with advanced renal cell cancer suggests that response to PD-1 blockade depends on both CD8 + T cell infiltration and enrichment of tumor-intrinsic somatic alterations.
Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine
Whole-exome sequencing (WES) has emerged as a transformative technology for biological discovery, but technical difficulties have so far prevented its widespread clinical use. Here, Eliezer Van Allen and colleagues are able to perform production-scale WES on small amounts of clinically acquired formalin-fixed, paraffin-embedded tumor tissues. Using a newly created WES clinical interpretation algorithm, they apply the complete clinical WES framework prospectively to patients and demonstrate how it can be used to directly affect patient care. Translating whole-exome sequencing (WES) for prospective clinical use may have an impact on the care of patients with cancer; however, multiple innovations are necessary for clinical implementation. These include rapid and robust WES of DNA derived from formalin-fixed, paraffin-embedded tumor tissue, analytical output similar to data from frozen samples and clinical interpretation of WES data for prospective use. Here, we describe a prospective clinical WES platform for archival formalin-fixed, paraffin-embedded tumor samples. The platform employs computational methods for effective clinical analysis and interpretation of WES data. When applied retrospectively to 511 exomes, the interpretative framework revealed a 'long tail' of somatic alterations in clinically important genes. Prospective application of this approach identified clinically relevant alterations in 15 out of 16 patients. In one patient, previously undetected findings guided clinical trial enrollment, leading to an objective clinical response. Overall, this methodology may inform the widespread implementation of precision cancer medicine.
A validated lineage-derived somatic truth data set enables benchmarking in cancer genome analysis
Existing cancer benchmark data sets for human sequencing data use germline variants, synthetic methods, or expensive validations, none of which are satisfactory for providing a large collection of true somatic variation across a whole genome. Here we propose a data set, Lineage derived Somatic Truth (LinST), of short somatic mutations in the HT115 colon cancer cell-line, that are validated using a known cell lineage that includes thousands of mutations and a high confidence region covering 2.7 gigabases per sample. Megan Shand et al. present Lineage derived Somatic Truth (LinST), a validated data set of somatic mutations from a colon cancer cell line with a known lineage tree structure. They show that LinST can be used to benchmark true-positive and false-positive rates in somatic variant-calling pipelines applied to cancer genomic data.
Mutational heterogeneity in cancer and the search for new cancer-associated genes
As the sample size in cancer genome studies increases, the list of genes identified as significantly mutated is likely to include more false positives; here, this problem is identified as stemming largely from mutation heterogeneity, and a new analytical methodology designed to overcome this problem is described. Weeding out 'false positive' cancer mutations Cancer genomic approaches have identified scores of genes responsible for the initiation and progression of cancer. But as the sample sizes increase, the list of putatively significant genes identified by current analytical methods continues to grow and is likely to include many false positives. This study shows that this situation stems largely from mutational heterogeneity and presents a novel methodology, MutSigCV, that overcomes the problem by incorporating mutational heterogeneity into the analysis. Application of MutSigCV to more than 3,000 tumour samples from 27 different tumour types shows that mutation frequencies vary more than 1,000-fold between extreme samples both between and within tumour types. And when applied to a data set on lung cancer, MutSigCV reduced the list of significantly mutated genes from 450 to a more manageable 11, most of them previously reported to be mutated in squamous cell lung cancer. Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 . These studies involve the sequencing of matched tumour–normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour–normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.
Landscape of genomic alterations in cervical carcinomas
Whole-exome sequencing and analysis of 115 cervical carcinoma–normal paired samples, in addition to transcriptome and whole-genome sequencing for a subset of these tumours, reveal novel genes mutated at significant levels within this cohort and provide evidence that HPV integration is a common mechanism for target gene overexpression; results also compare mutational landscapes between squamous cell carcinomas and adenocarcinomas. A genomic survey of cervical cancer To provide an overview of the genomic aberrations that contribute to cervical cancer these authors performed whole-exome sequencing and analysis of 115 cervical cancer–normal pairs, transcriptome sequences of 79 cervical carcinomas and whole-genomes from 14 cervical cancer–normal pairs. Analyses identify MAPK1 , HLA-B and ELF3 as novel significantly mutated genes and provide evidence that human papilloma virus integration is a common mechanism for target gene overexpression in cervical cancer. The results also provide a comparison of the mutational landscapes of squamous cell carcinomas and adenocarcinomas. Cervical cancer is responsible for 10–15% of cancer-related deaths in women worldwide 1 , 2 . The aetiological role of infection with high-risk human papilloma viruses (HPVs) in cervical carcinomas is well established 3 . Previous studies have also implicated somatic mutations in PIK3CA , PTEN , TP53 , STK11 and KRAS 4 , 5 , 6 , 7 as well as several copy-number alterations in the pathogenesis of cervical carcinomas 8 , 9 . Here we report whole-exome sequencing analysis of 115 cervical carcinoma–normal paired samples, transcriptome sequencing of 79 cases and whole-genome sequencing of 14 tumour–normal pairs. Previously unknown somatic mutations in 79 primary squamous cell carcinomas include recurrent E322K substitutions in the MAPK1 gene (8%), inactivating mutations in the HLA-B gene (9%), and mutations in EP300 (16%), FBXW7 (15%), NFE2L2 (4%), TP53 (5%) and ERBB2 (6%). We also observe somatic ELF3 (13%) and CBFB (8%) mutations in 24 adenocarcinomas. Squamous cell carcinomas have higher frequencies of somatic nucleotide substitutions occurring at cytosines preceded by thymines (Tp*C sites) than adenocarcinomas. Gene expression levels at HPV integration sites were statistically significantly higher in tumours with HPV integration compared with expression of the same genes in tumours without viral integration at the same site. These data demonstrate several recurrent genomic alterations in cervical carcinomas that suggest new strategies to combat this disease.
Comprehensive genomic characterization of head and neck squamous cell carcinomas
The Cancer Genome Atlas profiled 279 head and neck squamous cell carcinomas (HNSCCs) to provide a comprehensive landscape of somatic genomic alterations. Here we show that human-papillomavirus-associated tumours are dominated by helical domain mutations of the oncogene PIK3CA, novel alterations involving loss of TRAF3, and amplification of the cell cycle gene E2F1. Smoking-related HNSCCs demonstrate near universal loss-of-function TP53 mutations and CDKN2A inactivation with frequent copy number alterations including amplification of 3q26/28 and 11q13/22. A subgroup of oral cavity tumours with favourable clinical outcomes displayed infrequent copy number alterations in conjunction with activating mutations of HRAS or PIK3CA, coupled with inactivating mutations of CASP8, NOTCH1 and TP53. Other distinct subgroups contained loss-of-function alterations of the chromatin modifier NSD1, WNT pathway genes AJUBA and FAT1, and activation of oxidative stress factor NFE2L2, mainly in laryngeal tumours. Therapeutic candidate alterations were identified in most HNSCCs.
Comprehensive genomic characterization of head and neck squamous cell carcinomas
The Cancer Genome Atlas profiled 279 head and neck squamous cell carcinomas (HNSCCs) to provide a comprehensive landscape of somatic genomic alterations. Here we show that human-papillomavirus-associated tumours are dominated by helical domain mutations of the oncogene PIK3CA, novel alterations involving loss of TRAF3, and amplification of the cell cycle gene E2F1. Smoking-related HNSCCs demonstrate near universal loss-of-function TP53 mutations and CDKN2A inactivation with frequent copy number alterations including amplification of 3q26/28 and 11q13/22. A subgroup of oral cavity tumours with favourable clinical outcomes displayed infrequent copy number alterations in conjunction with activating mutations of HRAS or PIK3CA, coupled with inactivating mutations of CASP8, NOTCH1 and TP53. Other distinct subgroups contained loss-of-function alterations of the chromatin modifier NSD1, WNT pathway genes AJUBA and FAT1, and activation of oxidative stress factor NFE2L2, mainly in laryngeal tumours. Therapeutic candidate alterations were identified in most HNSCCs.
Comprehensive genomic characterization of head and neck squamous cell carcinomas
The Cancer Genome Atlas profiled 279 head and neck squamous cell carcinomas (HNSCCs) to provide a comprehensive landscape of somatic genomic alterations. Here we show that human-papillomavirus-associated tumours are dominated by helical domain mutations of the oncogene PIK3CA, novel alterations involving loss of TRAF3, and amplification of the cell cycle gene E2F1. Smoking-related HNSCCs demonstrate near universal loss-of-function TP53 mutations and CDKN2A inactivation with frequent copy number alterations including amplification of 3q26/28 and 11q13/22. A subgroup of oral cavity tumours with favourable clinical outcomes displayed infrequent copy number alterations in conjunction with activating mutations of HRAS or PIK3CA, coupled with inactivating mutations of CASP8, NOTCH1 and TP53. Other distinct subgroups contained loss-of-function alterations of the chromatin modifier NSD1, WNT pathway genes AJUBA and FAT1, and activation of oxidative stress factor NFE2L2, mainly in laryngeal tumours. Therapeutic candidate alterations were identified in most HNSCCs.
Comprehensive genomic characterization of head and neck squamous cell carcinomas
The Cancer Genome Atlas profiled 279 head and neck squamous cell carcinomas (HNSCCs) to provide a comprehensive landscape of somatic genomic alterations. Here we show that human-papillomavirus-associated tumours are dominated by helical domain mutations of the oncogene PIK3CA, novel alterations involving loss of TRAF3, and amplification of the cell cycle gene E2F1. Smoking-related HNSCCs demonstrate near universal loss-of-function TP53 mutations and CDKN2A inactivation with frequent copy number alterations including amplification of 3q26/28 and 11q13/22. A subgroup of oral cavity tumours with favourable clinical outcomes displayed infrequent copy number alterations in conjunction with activating mutations of HRAS or PIK3CA, coupled with inactivating mutations of CASP8, NOTCH1 and TP53. Other distinct subgroups contained loss-of-function alterations of the chromatin modifier NSD1, WNT pathway genes AJUBA and FAT1, and activation of oxidative stress factor NFE2L2, mainly in laryngeal tumours. Therapeutic candidate alterations were identified in most HNSCCs.
Whole-exome sequencing and clinical interpretation of FFPE tumor samples to guide precision cancer medicine
Translating whole exome sequencing (WES) for prospective clinical use may impact the care of cancer patients; however, multiple innovations are necessary for clinical implementation. These include: (1) rapid and robust WES from formalin-fixed paraffin embedded (FFPE) tumor tissue, (2) analytical output similar to data from frozen samples, and (3) clinical interpretation of WES data for prospective use. Here, we describe a prospective clinical WES platform for archival FFPE tumor samples. The platform employs computational methods for effective clinical analysis and interpretation of WES data. When applied retrospectively to 511 exomes, the interpretative framework revealed a “long tail” of somatic alterations in clinically important genes. Prospective application of this approach identified clinically relevant alterations in 15/16 patients. In one patient, previously undetected findings guided clinical trial enrollment leading to an objective clinical response. Overall, this methodology may inform the widespread implementation of precision cancer medicine.