Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
34
result(s) for
"Lillo, Mauricio A."
Sort by:
Prevention of connexin-43 remodeling protects against Duchenne muscular dystrophy cardiomyopathy
by
Shirokova, Natalia
,
Liu, Tong
,
Gonzalez, J. Patrick
in
Animals
,
Arrhythmia
,
Biomedical research
2020
Aberrant expression of the cardiac gap junction protein connexin-43 (Cx43) has been suggested as playing a role in the development of cardiac disease in the mdx mouse model of Duchenne muscular dystrophy (DMD); however, a mechanistic understanding of this association is lacking. Here, we identified a reduction of phosphorylation of Cx43 serines S325/S328/S330 in human and mouse DMD hearts. We hypothesized that hypophosphorylation of Cx43 serine-triplet triggers pathological Cx43 redistribution to the lateral sides of cardiomyocytes (remodeling). Therefore, we generated knockin mdx mice in which the Cx43 serine-triplet was replaced with either phospho-mimicking glutamic acids (mdxS3E) or nonphosphorylatable alanines (mdxS3A). The mdxS3E, but not mdxS3A, mice were resistant to Cx43 remodeling, with a corresponding reduction of Cx43 hemichannel activity. MdxS3E cardiomyocytes displayed improved intracellular Ca2+ signaling and a reduction of NADPH oxidase 2 (NOX2)/ROS production. Furthermore, mdxS3E mice were protected against inducible arrhythmias, related lethality, and the development of cardiomyopathy. Inhibition of microtubule polymerization by colchicine reduced both NOX2/ROS and oxidized CaMKII, increased S325/S328/S330 phosphorylation, and prevented Cx43 remodeling in mdx hearts. Together, these results demonstrate a mechanism of dystrophic Cx43 remodeling and suggest that targeting Cx43 may be a therapeutic strategy for preventing heart dysfunction and arrhythmias in DMD patients.
Journal Article
Control of astrocytic Ca2+ signaling by nitric oxide-dependent S-nitrosylation of Ca2+ homeostasis modulator 1 channels
2024
Background
Astrocytes Ca
2+
signaling play a central role in the modulation of neuronal function. Activation of metabotropic glutamate receptors (mGluR) by glutamate released during an increase in synaptic activity triggers coordinated Ca
2+
signals in astrocytes. Importantly, astrocytes express the Ca
2+
-dependent nitric oxide (NO)-synthetizing enzymes eNOS and nNOS, which might contribute to the Ca
2+
signals by triggering Ca
2+
influx or ATP release through the activation of connexin 43 (Cx43) hemichannels, pannexin-1 (Panx-1) channels or Ca
2+
homeostasis modulator 1 (CALHM1) channels. Hence, we aim to evaluate the participation of NO in the astrocytic Ca
2+
signaling initiated by stimulation of mGluR in primary cultures of astrocytes from rat brain cortex.
Results
Astrocytes were stimulated with glutamate or t-ACPD and NO-dependent changes in [Ca
2+
]
i
and ATP release were evaluated. In addition, the activity of Cx43 hemichannels, Panx-1 channels and CALHM1 channels was also analyzed. The expression of Cx43, Panx-1 and CALHM1 in astrocytes was confirmed by immunofluorescence analysis and both glutamate and t-ACPD induced NO-mediated activation of CALHM1 channels via direct S-nitrosylation, which was further confirmed by assessing CALHM1-mediated current using the two-electrode voltage clamp technique in Xenopus oocytes. Pharmacological blockade or siRNA-mediated inhibition of CALHM1 expression revealed that the opening of these channels provides a pathway for ATP release and the subsequent purinergic receptor-dependent activation of Cx43 hemichannels and Panx-1 channels, which further contributes to the astrocytic Ca
2+
signaling.
Conclusions
Our findings demonstrate that activation of CALHM1 channels through NO-mediated S-nitrosylation in astrocytes in vitro is critical for the generation of glutamate-initiated astrocytic Ca
2+
signaling.
Journal Article
Active Endothelial Inactivation of Hyperpermeability: The Role of Nitric Oxide-Driven cAMP/Epac1 Signaling
by
Durán, Walter N.
,
Burboa, Pía C.
,
Lillo, Mauricio A.
in
Actin
,
Acute respiratory distress syndrome
,
Adenylic acid
2025
Endothelial hyperpermeability is a hallmark of diverse inflammatory and vascular pathologies, including sepsis, acute respiratory distress syndrome (ARDS), ischemia–reperfusion injury, and atherosclerosis. Traditionally considered a passive return to baseline following stimulus withdrawal, barrier recovery is now recognized as an active, endothelial-driven process. Earlier work identified individual components of this restorative phase, such as cyclic adenosine monophosphate (cAMP)/exchange protein directly activated by cAMP 1 (Epac1) signaling, Rap1/Rac1 activation, vasodilator-stimulated phosphoprotein (VASP) phosphorylation, and targeted cytoskeletal remodeling, as well as kinase pathways involving PKA, PKG, and Src. However, these were often regarded as discrete events lacking a unifying framework. Recent integrative analyses, combining mechanistic insights from multiple groups, reveal that nitric oxide (NO) generated early during hyperpermeability can initiate a delayed cAMP/Epac1 cascade. This axis coordinates Rap1/Rac1-mediated cortical actin polymerization, VASP-driven junctional anchoring, retro-translocation of endothelial nitric oxide synthase (eNOS) to caveolar domains, PP2A-dependent suppression of actomyosin tension, and Krüppel-like factor 2 (KLF2)-driven transcriptional programs that sustain endothelial quiescence. Together, these pathways form a temporally orchestrated, multi-tiered “inactivation” program capable of restoring barrier integrity even in the continued presence of inflammatory stimuli. This conceptual shift reframes NO from solely a barrier-disruptive mediator to the initiating trigger of a coordinated, pro-resolution mechanism. The unified framework integrates cytoskeletal dynamics, junctional reassembly, focal adhesion turnover, and redox/transcriptional control, providing multiple potential intervention points. Therapeutically, Epac1 activation, Rap1/Rac1 enhancement, RhoA/ROCK inhibition, PP2A activation, and KLF2 induction represent strategies to accelerate endothelial sealing in acute microvascular syndromes. Moreover, applying these mechanisms to arterial endothelium could limit low-density lipoprotein (LDL) entry and foam cell formation, offering a novel adjunctive approach for atherosclerosis prevention. In this review, we will discuss both the current understanding of endothelial hyperpermeability mechanisms and the emerging pathways of its active inactivation, integrating molecular, structural, and translational perspectives.
Journal Article
CGRP signalling inhibits NO production through pannexin-1 channel activation in endothelial cells
2019
Blood flow distribution relies on precise coordinated control of vasomotor tone of resistance arteries by complex signalling interactions between perivascular nerves and endothelial cells. Sympathetic nerves are vasoconstrictors, whereas endothelium-dependent NO production provides a vasodilator component. In addition, resistance vessels are also innervated by sensory nerves, which are activated during inflammation and cause vasodilation by the release of calcitonin gene-related peptide (CGRP). Inflammation leads to superoxide anion (O
2
• −
) formation and endothelial dysfunction, but the involvement of CGRP in this process has not been evaluated. Here we show a novel mechanistic relation between perivascular sensory nerve-derived CGRP and the development of endothelial dysfunction. CGRP receptor stimulation leads to pannexin-1-formed channel opening and the subsequent O
2
• −
-dependent connexin-based hemichannel activation in endothelial cells. The prolonged opening of these channels results in a progressive inhibition of NO production. These findings provide new therapeutic targets for the treatment of the inflammation-initiated endothelial dysfunction.
Journal Article
Connexin and Pannexin Large-Pore Channels in Microcirculation and Neurovascular Coupling Function
by
Durán, Walter N.
,
Gaete, Pablo S.
,
Puebla, Mariela
in
Blood vessels
,
Communication
,
Endothelium
2022
Microcirculation homeostasis depends on several channels permeable to ions and/or small molecules that facilitate the regulation of the vasomotor tone, hyperpermeability, the blood–brain barrier, and the neurovascular coupling function. Connexin (Cxs) and Pannexin (Panxs) large-pore channel proteins are implicated in several aspects of vascular physiology. The permeation of ions (i.e., Ca2+) and key metabolites (ATP, prostaglandins, D-serine, etc.) through Cxs (i.e., gap junction channels or hemichannels) and Panxs proteins plays a vital role in intercellular communication and maintaining vascular homeostasis. Therefore, dysregulation or genetic pathologies associated with these channels promote deleterious tissue consequences. This review provides an overview of current knowledge concerning the physiological role of these large-pore molecule channels in microcirculation (arterioles, capillaries, venules) and in the neurovascular coupling function.
Journal Article
Novel Pannexin-1-Coupled Signaling Cascade Involved in the Control of Endothelial Cell Function and NO-Dependent Relaxation
by
Gaete, Pablo S.
,
Poblete, Inés
,
Puebla, Mariela
in
Animals
,
Arteries - drug effects
,
Calcium Channels - metabolism
2021
Deletion of pannexin-1 (Panx-1) leads not only to a reduction in endothelium-derived hyperpolarization but also to an increase in NO-mediated vasodilation. Therefore, we evaluated the participation of Panx-1-formed channels in the control of membrane potential and [Ca2+]i of endothelial cells. Changes in NO-mediated vasodilation, membrane potential, superoxide anion (O2⋅–) formation, and endothelial cell [Ca2+]i were analyzed in rat isolated mesenteric arterial beds and primary cultures of mesenteric endothelial cells. Inhibition of Panx-1 channels with probenecid (1 mM) or the Panx-1 blocking peptide 10Panx (60 μM) evoked an increase in the ACh (100 nM)-induced vasodilation of KCl-contracted mesenteries and in the phosphorylation level of endothelial NO synthase (eNOS) at serine 1177 (P-eNOSS1177) and Akt at serine 473 (P-AktS473). In addition, probenecid or 10Panx application activated a rapid, tetrodotoxin (TTX, 300 nM)-sensitive, membrane potential depolarization and [Ca2+]i increase in endothelial cells. Interestingly, the endothelial cell depolarization was converted into a transient spike after removing Ca2+ ions from the buffer solution and in the presence of 100 μM mibefradil or 10 μM Ni2+. As expected, Ni2+ also abolished the increment in [Ca2+]i. Expression of Nav1.2, Nav1.6, and Cav3.2 isoforms of voltage-dependent Na+ and Ca2+ channels was confirmed by immunocytochemistry. Furthermore, the Panx-1 channel blockade was associated with an increase in O2⋅– production. Treatment with 10 μM TEMPOL or 100 μM apocynin prevented the increase in O2⋅– formation, ACh-induced vasodilation, P-eNOSS1177, and P-AktS473 observed in response to Panx-1 inhibition. These findings indicate that the Panx-1 channel blockade triggers a novel complex signaling pathway initiated by the sequential activation of TTX-sensitive Nav channels and Cav3.2 channels, leading to an increase in NO-mediated vasodilation through a NADPH oxidase-dependent P-eNOSS1177, which suggests that Panx-1 may be involved in the endothelium-dependent control of arterial blood pressure.
Journal Article
Endothelial TRPV4/Cx43 Signaling Complex Regulates Vasomotor Tone in Resistance Arteries
2024
S-nitrosylation of Cx43 gap junction channels critically regulates communication between smooth muscle cells and endothelial cells. This posttranslational modification also induces the opening of undocked Cx43 hemichannels. However, its specific impact on vasomotor regulation remains unclear. Considering the role of endothelial TRPV4 channel activation in promoting vasodilation through nitric oxide (NO) production, we investigated the direct modulation of endothelial Cx43 hemichannels by TRPV4 channel activation. Using the proximity ligation assay, we identify that Cx43 and TRPV4 are found in close proximity in the endothelium of resistance arteries. In primary endothelial cell cultures from resistance arteries (ECs), GSK-induced TRPV4 activation enhances eNOS activity, increases NO production, and opens Cx43 hemichannels via direct S-nitrosylation. Notably, the elevated intracellular Ca
levels caused by TRPV4 activation were reduced by blocking Cx43 hemichannels. In ex vivo mesenteric arteries, inhibiting Cx43 hemichannels reduced endothelial hyperpolarization without affecting NO production in ECs, underscoring a critical role of TRPV4/Cx43 signaling in endothelial electrical behavior. We perturbed the proximity of Cx43/TRPV4 by disrupting lipid rafts in ECs using β-cyclodextrin. Under these conditions, hemichannel activity, Ca
influx, and endothelial hyperpolarization were blunted upon GSK stimulation. Intravital microscopy of mesenteric arterioles
further demonstrated that inhibiting Cx43 hemichannels activity, NO production and disrupting endothelial integrity reduce TRPV4-induced relaxation. These findings underscore a new pivotal role of Cx43 hemichannel associated with TRPV4 signaling pathway in modulating endothelial electrical behavior and vasomotor tone regulation.
Journal Article
Control of astrocytic Ca 2+ signaling by nitric oxide-dependent S-nitrosylation of Ca 2+ homeostasis modulator 1 channels
by
Lillo, Mauricio A
,
Figueroa, Xavier F
,
Puebla, Mariela
in
Animals
,
Astrocytes - drug effects
,
Astrocytes - metabolism
2024
Astrocytes Ca
signaling play a central role in the modulation of neuronal function. Activation of metabotropic glutamate receptors (mGluR) by glutamate released during an increase in synaptic activity triggers coordinated Ca
signals in astrocytes. Importantly, astrocytes express the Ca
-dependent nitric oxide (NO)-synthetizing enzymes eNOS and nNOS, which might contribute to the Ca
signals by triggering Ca
influx or ATP release through the activation of connexin 43 (Cx43) hemichannels, pannexin-1 (Panx-1) channels or Ca
homeostasis modulator 1 (CALHM1) channels. Hence, we aim to evaluate the participation of NO in the astrocytic Ca
signaling initiated by stimulation of mGluR in primary cultures of astrocytes from rat brain cortex.
Astrocytes were stimulated with glutamate or t-ACPD and NO-dependent changes in [Ca
]
and ATP release were evaluated. In addition, the activity of Cx43 hemichannels, Panx-1 channels and CALHM1 channels was also analyzed. The expression of Cx43, Panx-1 and CALHM1 in astrocytes was confirmed by immunofluorescence analysis and both glutamate and t-ACPD induced NO-mediated activation of CALHM1 channels via direct S-nitrosylation, which was further confirmed by assessing CALHM1-mediated current using the two-electrode voltage clamp technique in Xenopus oocytes. Pharmacological blockade or siRNA-mediated inhibition of CALHM1 expression revealed that the opening of these channels provides a pathway for ATP release and the subsequent purinergic receptor-dependent activation of Cx43 hemichannels and Panx-1 channels, which further contributes to the astrocytic Ca
signaling.
Our findings demonstrate that activation of CALHM1 channels through NO-mediated S-nitrosylation in astrocytes in vitro is critical for the generation of glutamate-initiated astrocytic Ca
signaling.
Journal Article
Remodeled Connexin 43 hemichannels alter cardiac excitability and promote arrhythmias
by
Lillo, Mauricio A
,
Shirokova, Natalia
,
Gaul-Muller, Kelli
in
Arrhythmia
,
Cardiac arrhythmia
,
Cardiomyocytes
2022
Connexin-43 (Cx43) is the most abundant protein forming gap junction channels (GJCs) in cardiac ventricles. In multiple cardiac pathologies, including hypertrophy and heart failure, Cx43 is found remodeled at the lateral side of the intercalated discs of ventricular cardiomyocytes. Remodeling of Cx43 has been long linked to spontaneous ventricular arrhythmia, yet the mechanisms by which arrhythmias develop are still debated. Using a model of a dystrophic cardiomyopathy, we previously showed that remodeled Cx43 function as aberrant hemichannels (non-forming GJCs) that alter cardiomyocyte excitability and, consequently, promote arrhythmias. Here, we aim to evaluate if opening of remodeled Cx43 can serve as a general mechanism to alter cardiac excitability independent of cellular dysfunction associated with a particular cardiomyopathy. To address this issue, we used a genetically modified Cx43 knock-in mouse (S3A) that promotes cardiac remodeling of Cx43 protein without apparent cardiac dysfunction. Importantly, when S3A mice were subjected to cardiac stress using the β-adrenergic agonist isoproterenol (Iso), they displayed acute and severe arrhythmias, which were not observed in WT mice. Pre-treatment of S3A mice with the Cx43 hemichannel blocker, Gap19, prevented Iso-induced abnormal electrocardiographic behavior. At the cellular level, when compared with WT, Iso-treated S3A cardiomyocytes showed increased membrane permeability and greater plasma membrane depolarization, which subsequently leads to triggered activity. These cellular dysfunctions were also prevented by Cx43 hemichannel blockers. Our results support the notion that opening of remodeled Cx43 hemichannels, regardless of the type of cardiomyopathy, is sufficient to mediate cardiac stress-induced arrhythmogenicity. Competing Interest Statement The authors have declared no competing interest.
Impaired S-nitrosylation of Cx43 prevents arrhythmogenicity and myocardial injury upon cardiac stress in Duchenne Muscular Dystrophy
2024
Connexin-43 (Cx43) plays a critical role in the propagation of action potentials and cardiac contractility. In healthy cardiomyocytes, Cx43 is mainly located at the intercalated disk; however, Cx43 remodeling is observed in cardiac pathologies and is linked with arrhythmogenesis and sudden cardiac death. Using a mouse model of Duchenne muscular dystrophy (DMD), we previously demonstrated that Cx43 localizes to the lateral side of dystrophic cardiomyocytes, forming undocked hemichannels. β-adrenergic signaling-induced cardiac stress promotes S-nitrosylation and the opening of undocked Cx43 hemichannels leading to disrupted cardiac membrane excitability and deadly arrhythmogenic behaviors. To establish the direct role of S-nitrosylated Cx43 in DMD cardiomyopathy, we generated knockin DMDmdx mice with reduced levels of S-nitrosylated Cx43, by replacing cysteine 271 with a serine in one Cx43 of the unique site for S-nitrosylation of Cx43 (DMDmdx:C271S+/-). Immunofluorescence analysis revealed that cardiac Cx43 lateralization in DMDmdx:C271S+/- mice was similar to DMDmdx mice, indicating that the genetic modification did not prevent Cx43 remodeling. Upon isoproterenol treatment, DMDmdx mice displayed a higher incidence of arrhythmogenic events when compared to DMDmdx:C271S+/- mice, which more closely resemble wild-type mice. Optical mapping imaging in isolated hearts showed that DMDmdx mice displayed aberrant Ca2+ signaling and prolonged action potentials, which is restored in DMDmdx:C271S+/- mice. Isoproterenol treatment evoked severe myocardial injury in DMDmdx mice, which was significantly attenuated in DMDmdx:C271S+/- mice. Notably, DMDmdx mice treated with Gap19, a Cx43 hemichannel blocker, exhibited cardioprotection against myocardial injury. We concluded that S-nitrosylation of Cx43 proteins is a fundamental NO-mediated mechanism involved in arrhythmias and myocardial injury in DMDmdx, occurring through the opening of hemichannels following β-adrenergic stress.