Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
198 result(s) for "Lim, Bing"
Sort by:
Methionine is a metabolic dependency of tumor-initiating cells
Understanding cellular metabolism holds immense potential for developing new classes of therapeutics that target metabolic pathways in cancer. Metabolic pathways are altered in bulk neoplastic cells in comparison to normal tissues. However, carcinoma cells within tumors are heterogeneous, and tumor-initiating cells (TICs) are important therapeutic targets that have remained metabolically uncharacterized. To understand their metabolic alterations, we performed metabolomics and metabolite tracing analyses, which revealed that TICs have highly elevated methionine cycle activity and transmethylation rates that are driven by MAT2A. High methionine cycle activity causes methionine consumption to far outstrip its regeneration, leading to addiction to exogenous methionine. Pharmacological inhibition of the methionine cycle, even transiently, is sufficient to cripple the tumor-initiating capability of these cells. Methionine cycle flux specifically influences the epigenetic state of cancer cells and drives tumor initiation. Methionine cycle enzymes are also enriched in other tumor types, and MAT2A expression impinges upon the sensitivity of certain cancer cells to therapeutic inhibition.Elevated activity of the methionine cycle is essential for cancer stem cell tumorigenesis and represents a therapeutic vulnerability.
MicroRNAs Induced During Adipogenesis that Accelerate Fat Cell Development Are Downregulated in Obesity
MicroRNAs Induced During Adipogenesis that Accelerate Fat Cell Development Are Downregulated in Obesity Huangming Xie 1 , 2 , 3 , Bing Lim 2 , 3 , 4 and Harvey F. Lodish 1 , 2 , 5 1 Whitehead Institute for Biomedical Research, Cambridge, Massachusetts; 2 Computation and Systems Biology, Singapore-MIT Alliance, National University of Singapore, Singapore; 3 Stem Cell and Developmental Biology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Singapore; 4 Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and 5 Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. Corresponding author: Bing Lim, limb1{at}gis.a-star.edu.sg , or Harvey F. Lodish, lodish{at}wi.mit.edu . Abstract OBJECTIVE We investigated the regulation and involvement of microRNAs (miRNAs) in fat cell development and obesity. RESEARCH DESIGN AND METHODS Using miRNA microarrays, we profiled the expression of >370 miRNAs during adipogenesis of preadipocyte 3T3-L1 cells and adipocytes from leptin deficient ob / ob and diet-induced obese mice. Changes in key miRNAs were validated by RT-PCR. We further assessed the contribution of the chronic inflammatory environment in obese adipose tissue to the dysregulated miRNA expression by tumor necrosis factor (TNF)-α treatment of adipocytes. We functionally characterized two adipocyte-enriched miRNAs, miR-103 and miR-143, by a gain-of-function approach. RESULTS Similar miRNAs were differentially regulated during in vitro and in vivo adipogenesis. Importantly, miRNAs that were induced during adipogenesis were downregulated in adipocytes from both types of obese mice and vice versa. These changes are likely associated with the chronic inflammatory environment, since they were mimicked by TNF-α treatment of differentiated adipocytes. Ectopic expression of miR-103 or miR-143 in preadipocytes accelerated adipogenesis, as measured both by the upregulation of many adipogenesis markers and by an increase in triglyceride accumulation at an early stage of adipogenesis. CONCLUSIONS Our results provide the first experimental evidence for miR-103 function in adipose biology. The remarkable inverse regulatory pattern for many miRNAs during adipogenesis and obesity has important implications for understanding adipose tissue dysfunction in obese mice and humans and the link between chronic inflammation and obesity with insulin resistance. Footnotes The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Received September 21, 2008. Accepted January 25, 2009. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. © 2009 by the American Diabetes Association.
MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation
Molecular biology: in the midst of things Most miRNA target sequences that have been studied reside in the 3′ UTR, the part of the messenger RNA that is downstream of the coding region. In this work Rigoutsos and colleagues demonstrate that the coding regions of several genes encoding transcription factors involved in the maintenance of stem cell identity, such as Nanog , Oct4 , and Sox2 , have miRNA target sites. Three miRNAs that are upregulated when embryonic stem cells are induced to differentiate bind these sites in various combinations, and thereby confer specific phenotypes. The coding regions of several genes that encode transcription factors involved in maintenance of stem cell identity, such as Nanog , Oct4 , and Sox2 , have miRNA target sites. Three miRNAs that are upregulated when embryonic stem cells are induced to differentiate bind these sites in various combinations, and thereby confer specific phenotypes. MicroRNAs (miRNAs) are short RNAs that direct messenger RNA degradation or disrupt mRNA translation in a sequence-dependent manner 1 , 2 , 3 , 4 , 5 , 6 , 7 . For more than a decade, attempts to study the interaction of miRNAs with their targets were confined to the 3′ untranslated regions of mRNAs 1 , fuelling an underlying assumption that these regions are the principal recipients of miRNA activity. Here we focus on the mouse Nanog , Oct4 (also known as Pou5f1 ) and Sox2 genes 8 , 9 , 10 , 11 and demonstrate the existence of many naturally occurring miRNA targets in their amino acid coding sequence (CDS). Some of the mouse targets analysed do not contain the miRNA seed, whereas others span exon–exon junctions or are not conserved in the human and rhesus genomes. miR-134, miR-296 and miR-470, upregulated on retinoic-acid-induced differentiation of mouse embryonic stem cells, target the CDS of each transcription factor in various combinations, leading to transcriptional and morphological changes characteristic of differentiating mouse embryonic stem cells, and resulting in a new phenotype. Silent mutations at the predicted targets abolish miRNA activity, prevent the downregulation of the corresponding genes and delay the induced phenotype. Our findings demonstrate the abundance of CDS-located miRNA targets, some of which can be species-specific, and support an augmented model whereby animal miRNAs exercise their control on mRNAs through targets that can reside beyond the 3′ untranslated region.
Elucidating the genomic architecture of Asian EGFR-mutant lung adenocarcinoma through multi-region exome sequencing
EGFR -mutant lung adenocarcinomas (LUAD) display diverse clinical trajectories and are characterized by rapid but short-lived responses to EGFR tyrosine kinase inhibitors (TKIs). Through sequencing of 79 spatially distinct regions from 16 early stage tumors, we show that despite low mutation burdens, EGFR -mutant Asian LUADs unexpectedly exhibit a complex genomic landscape with frequent and early whole-genome doubling, aneuploidy, and high clonal diversity. Multiple truncal alterations, including TP53 mutations and loss of CDKN2A and RB1 , converge on cell cycle dysregulation, with late sector-specific high-amplitude amplifications and deletions that potentially beget drug resistant clones. We highlight the association between genomic architecture and clinical phenotypes, such as co-occurring truncal drivers and primary TKI resistance. Through comparative analysis with published smoking-related LUAD, we postulate that the high intra-tumor heterogeneity observed in Asian EGFR -mutant LUAD may be contributed by an early dominant driver, genomic instability, and low background mutation rates. EGFR mutant lung adenocarcinoma (LUAD) exhibit diverse clinical outcomes in response to targeted therapies. Here the authors show that these LUADs involve a complex genomic landscape with high intratumor heterogeneity, providing insights into the evolutionary trajectory of oncogene-driven LUAD and potential mediators of EGFR TKI resistance.
Tumour-initiating cell-specific miR-1246 and miR-1290 expression converge to promote non-small cell lung cancer progression
The tumour-initiating cell (TIC) model accounts for phenotypic and functional heterogeneity among tumour cells. MicroRNAs (miRNAs) are regulatory molecules frequently aberrantly expressed in cancers, and may contribute towards tumour heterogeneity and TIC behaviour. More recent efforts have focused on miRNAs as diagnostic or therapeutic targets. Here, we identified the TIC-specific miRNAs, miR-1246 and miR-1290, as crucial drivers for tumour initiation and cancer progression in human non-small cell lung cancer. The loss of either miRNA impacted the tumour-initiating potential of TICs and their ability to metastasize. Longitudinal analyses of serum miR-1246 and miR-1290 levels across time correlate their circulating levels to the clinical response of lung cancer patients who were receiving ongoing anti-neoplastic therapies. Functionally, direct inhibition of either miRNA with locked nucleic acid administered systemically, can arrest the growth of established patient-derived xenograft tumours, thus indicating that these miRNAs are clinically useful as biomarkers for tracking disease progression and as therapeutic targets. miRNAs can function either as proto-oncogenes or tumour suppressors in several cancers; however their function in tumour initiating cells is unclear. Here, Zhang et al . show that tumour initiating cell-specific miR-1246 and miR-1290 promote lung cancer initiation and metastasis and could serve as prognostic markers.
Global H3.3 dynamic deposition defines its bimodal role in cell fate transition
H3.3 is a histone variant, which is deposited on genebodies and regulatory elements, by Hira, marking active transcription. Moreover, H3.3 is deposited on heterochromatin by Atrx/Daxx complex. The exact role of H3.3 in cell fate transition remains elusive. Here, we investigate the dynamic changes in the deposition of the histone variant H3.3 during cellular reprogramming. H3.3 maintains the identities of the parental cells during reprogramming as its removal at early time-point enhances the efficiency of the process. We find that H3.3 plays a similar role in transdifferentiation to hematopoietic progenitors and neuronal differentiation from embryonic stem cells. Contrastingly, H3.3 deposition on genes associated with the newly reprogrammed lineage is essential as its depletion at the later phase abolishes the process. Mechanistically, H3.3 deposition by Hira, and its K4 and K36 modifications are central to the role of H3.3 in cell fate conversion. Finally, H3.3 safeguards fibroblast lineage by regulating Mapk cascade and collagen synthesis. Histone variant H3.3 is incorporated at transcriptionally active genes and is associated with active marks. Here, the authors investigate H3.3 deposition during reprogramming and find that initially H3.3 helps maintain parental cell fate and is later required for establishment of the cell lineages.
Isolation and 3D expansion of multipotent Sox9+ mouse lung progenitors
This paper describes methods for the 3D culture of mouse lung progenitor cells that can differentiate in vitro and in vivo along all epithelial lineages. Multiple adult tissues are maintained by stem cells of restricted developmental potential which can only form a subset of lineages within the tissue. For instance, the two adult lung epithelial compartments (airways and alveoli) are separately maintained by distinct lineage-restricted stem cells. A challenge has been to obtain multipotent stem cells and/or progenitors that can generate all epithelial cell types of a given tissue. Here we show that mouse Sox9 + multipotent embryonic lung progenitors can be isolated and expanded long term in 3D culture. Cultured Sox9 + progenitors transcriptionally resemble their in vivo counterparts and generate both airway and alveolar cell types in vitro . Sox9 + progenitors that were transplanted into injured adult mouse lungs differentiated into all major airway and alveolar lineages in vivo in a region-appropriate fashion. We propose that a single expandable embryonic lung progenitor population with broader developmental competence may eventually be used as an alternative for region-restricted adult tissue stem cells in regenerative medicine.
Tbx3 improves the germ-line competency of induced pluripotent stem cells
Tbx3 boosts iPS quality While much attention has been given to the study of different genetic and chemical methods for the generation of iPS (induced pluripotent stem) cell lines, relatively little is known about the variability in overall quality of iPS cells. This paper identifies a transcription factor, Tbx3, that significantly improves the quality of iPS cells. Tbx3 also accelerates the reprogramming process of mouse embryonic fibroblasts into iPS cells and significantly improves the germ-line transmission of iPS-derived germ cells in chimaeric animals. The transcription factor Tbx3 is shown to significantly improve the quality of induced pluripotent stem (iPS) cells. Tbx3 binding sites in embryonic stem cells are present in genes involved in pluripotency and reprogramming factors. Furthermore, there are intrinsic qualitative differences in iPS cells generated by different methods in terms of their pluripotency, thus highlighting the need to rigorously characterize iPS cells beyond in vitro studies. Induced pluripotent stem (iPS) cells can be obtained by the introduction of defined factors into somatic cells 1 . The combination of Oct4 (also known as Pou5f1), Sox2 and Klf4 (which we term OSK) constitutes the minimal requirement for generating iPS cells from mouse embryonic fibroblasts. These cells are thought to resemble embryonic stem cells (ESCs) on the basis of global gene expression analyses; however, few studies have tested the ability and efficiency of iPS cells to contribute to chimaerism, colonization of germ tissues, and most importantly, germ-line transmission and live birth from iPS cells produced by tetraploid complementation. Using genomic analyses of ESC genes that have roles in pluripotency and fusion-mediated somatic cell reprogramming, here we show that the transcription factor Tbx3 significantly improves the quality of iPS cells. iPS cells generated with OSK and Tbx3 (OSKT) are superior in both germ-cell contribution to the gonads and germ-line transmission frequency. However, global gene expression profiling could not distinguish between OSK and OSKT iPS cells. Genome-wide chromatin immunoprecipitation sequencing analysis of Tbx3-binding sites in ESCs suggests that Tbx3 regulates pluripotency-associated and reprogramming factors, in addition to sharing many common downstream regulatory targets with Oct4, Sox2, Nanog and Smad1. This study underscores the intrinsic qualitative differences between iPS cells generated by different methods, and highlights the need to rigorously characterize iPS cells beyond in vitro studies.
ZFP36L2 is required for self-renewal of early burst-forming unit erythroid progenitors
Under stress conditions such as acute blood loss or chronic anaemia, glucocorticoids trigger self-renewal of early burst-forming unit–erythroid (BFU–E) progenitors in the spleen, however, the mechanism of glucocorticoid action is not well understood; here the RNA binding protein ZFP36L2 is identified as a transcriptional target of the glucocorticoid receptor in BFU-Es and is shown to be involved in the process of erythroid cell expansion following exposure to glucocorticoids. Control of erythroid cell self-renewal Although considerable progress has been made in the understanding of self-renewal of embryonic stem and iPS cells, much less is known about the intracellular signalling proteins that regulate self-renewal of stem and progenitor cells in adult animals. Under stress conditions such as acute blood loss or chronic anaemia, glucocorticoids trigger self-renewal of erythroid burst-forming unit–erythrocyte (BFU–E) progenitors in the spleen, leading to increased numbers of self-renewal divisions. Harvey Lodish and colleagues have now identified the RNA-binding protein ZFP36l2 as a transcriptional target of the glucocorticoid receptor in BFU–Es, and show that it is involved in the process of erythroid cell expansion following exposure to glucocorticoids. Stem cells and progenitors in many lineages undergo self-renewing divisions, but the extracellular and intracellular proteins that regulate this process are largely unknown. Glucocorticoids stimulate red blood cell formation by promoting self-renewal of early burst-forming unit–erythroid (BFU–E) progenitors 1 , 2 , 3 , 4 . Here we show that the RNA-binding protein ZFP36L2 is a transcriptional target of the glucocorticoid receptor (GR) in BFU–Es and is required for BFU–E self-renewal. ZFP36L2 is normally downregulated during erythroid differentiation from the BFU–E stage, but its expression is maintained by all tested GR agonists that stimulate BFU–E self-renewal, and the GR binds to several potential enhancer regions of ZFP36L2. Knockdown of ZFP36L2 in cultured BFU–E cells did not affect the rate of cell division but disrupted glucocorticoid-induced BFU–E self-renewal, and knockdown of ZFP36L2 in transplanted erythroid progenitors prevented expansion of erythroid lineage progenitors normally seen following induction of anaemia by phenylhydrazine treatment. ZFP36L2 preferentially binds to messenger RNAs that are induced or maintained at high expression levels during terminal erythroid differentiation and negatively regulates their expression levels. ZFP36L2 therefore functions as part of a molecular switch promoting BFU–E self-renewal and a subsequent increase in the total numbers of colony-forming unit–erythroid (CFU–E) progenitors and erythroid cells that are generated.
miR-200 Enhances Mouse Breast Cancer Cell Colonization to Form Distant Metastases
The development of metastases involves the dissociation of cells from the primary tumor to penetrate the basement membrane, invade and then exit the vasculature to seed, and colonize distant tissues. The last step, establishment of macroscopic tumors at distant sites, is the least well understood. Four isogenic mouse breast cancer cell lines (67NR, 168FARN, 4TO7, and 4T1) that differ in their ability to metastasize when implanted into the mammary fat pad are used to model the steps of metastasis. Only 4T1 forms macroscopic lung and liver metastases. Because some miRNAs are dysregulated in cancer and affect cellular transformation, tumor formation, and metastasis, we examined whether changes in miRNA expression might explain the differences in metastasis of these cells. miRNA expression was analyzed by miRNA microarray and quantitative RT-PCR in isogenic mouse breast cancer cells with distinct metastatic capabilities. 4T1 cells that form macroscopic metastases had elevated expression of miR-200 family miRNAs compared to related cells that invade distant tissues, but are unable to colonize. Moreover, over-expressing miR-200 in 4TO7 cells enabled them to metastasize to lung and liver. These findings are surprising since the miR-200 family was previously shown to promote epithelial characteristics by inhibiting the transcriptional repressor Zeb2 and thereby enhancing E-cadherin expression. We confirmed these findings in these cells. The most metastatic 4T1 cells acquired epithelial properties (high expression of E-cadherin and cytokeratin-18) compared to the less metastatic cells. Expression of miR-200, which promotes a mesenchymal to epithelial cell transition (MET) by inhibiting Zeb2 expression, unexpectedly enhances macroscopic metastases in mouse breast cancer cell lines. These results suggest that for some tumors, tumor colonization at metastatic sites might be enhanced by MET. Therefore the epithelial nature of a tumor does not predict metastatic outcome.