Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
61
result(s) for
"Lim, Sean H"
Sort by:
Immune responses against SARS-CoV-2 variants after two and three doses of vaccine in B-cell malignancies: UK PROSECO study
by
Coleman, Helen
,
Kelly, Adam
,
Galloway, Celine
in
Antibodies
,
Antibody Formation
,
Chemotherapy
2022
Patients with hematological malignancies are at increased risk of severe COVID-19 outcomes due to compromised immune responses, but the insights of these studies have been compromised due to intrinsic limitations in study design. Here we present the PROSECO prospective observational study ( NCT04858568 ) on 457 patients with lymphoma that received two or three COVID-19 vaccine doses. We show undetectable humoral responses following two vaccine doses in 52% of patients undergoing active anticancer treatment. Moreover, 60% of patients on anti-CD20 therapy had undetectable antibodies following full vaccination within 12 months of receiving their anticancer therapy. However, 70% of individuals with indolent B-cell lymphoma displayed improved antibody responses following booster vaccination. Notably, 63% of all patients displayed antigen-specific T-cell responses, which increased after a third dose irrespective of their cancer treatment status. Our results emphasize the urgency of careful monitoring of COVID-19-specific immune responses to guide vaccination schemes in these vulnerable populations.
Journal Article
Agonistic CD27 antibody potency is determined by epitope-dependent receptor clustering augmented through Fc-engineering
2022
Agonistic CD27 monoclonal antibodies (mAb) have demonstrated impressive anti-tumour efficacy in multiple preclinical models but modest clinical responses. This might reflect current reagents delivering suboptimal CD27 agonism. Here, using a novel panel of CD27 mAb including a clinical candidate, we investigate the determinants of CD27 mAb agonism. Epitope mapping and
in silico
docking analysis show that mAb binding to membrane-distal and external-facing residues are stronger agonists. However, poor epitope-dependent agonism could partially be overcome by Fc-engineering, using mAb isotypes that promote receptor clustering, such as human immunoglobulin G1 (hIgG1, h1) with enhanced affinity to Fc gamma receptor (FcγR) IIb, or hIgG2 (h2). This study provides the critical knowledge required for the development of agonistic CD27 mAb that are potentially more clinically efficacious.
Agonistic CD27 monoclonal antibodies can be used to enhance the efficacy of depleting antibodies such as anti-CTLA-4 in a colon adenocarcinoma tumour model. CD27 antibody agonism is dependent on isotype and epitope specificity.
Journal Article
RIVA – a phase IIa study of rituximab and varlilumab in relapsed or refractory B-cell malignancies: study protocol for a randomized controlled trial
by
Fines, Keira
,
Lim, Sean H.
,
Griffiths, Gareth
in
Antibodies
,
Antibodies, Monoclonal - administration & dosage
,
Antibodies, Monoclonal - adverse effects
2018
Background
Over 12,000 new cases of B-cell malignancies are diagnosed in the UK each year, with diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) being the most common subtypes. Standard frontline therapy consists of immunochemotherapy with a CD20 monoclonal antibody (mAb), such as rituximab, delivered in combination with multi-agent chemotherapy. Despite being considered a treatable and potentially curable cancer, approximately 30% of DLBCL cases will relapse after frontline therapy. Advanced stage FL is incurable and typically has a relapsing and remitting course with a frequent need for re-treatment
.
Based on supportive preclinical data, we hypothesised that the addition of varlilumab (an anti-CD27 mAb) to rituximab (an anti-CD20 mAb) can improve the rate, depth and duration of the response of rituximab monotherapy in patients with relapsed or refractory B-cell malignancies.
Methods/design
Combination treatment of varlilumab plus rituximab, in two different dosing regimens, is being tested in the RIVA trial. RIVA is a two-stage open-label randomised phase IIa design in up to 40 patients with low- or high-grade relapsed or refractory CD20
+
B-cell lymphoma. The study is open to recruitment in the UK. Enrolled patients are randomised 1:1 to two different experimental varlilumab to rituximab combinations.
The primary objective is to determine the safety and tolerability of the combination and the anti-tumour activity (response) in relapsed or refractory B-cell malignancies. Secondary objectives will include an evaluation of the duration of the response and overall survival. Tertiary translational objectives include assessment of B-cell depletion, changes in immune effector cell populations, expression of CD27 as a biomarker of response and pharmacokinetic properties. Analyses will not be powered for formal statistical comparisons between treatment arms.
Discussion
RIVA will determine whether the combination of rituximab and varlilumab in relapsed or refractory B-cell malignancies is active and safe prior to future phase II/III trials.
Trial registration
EudraCT, 2017–000302-37. Registered on 16 January 2017. ISRCTN,
ISRCTN15025004
. Registered on 16 August 2017.
Journal Article
Impact of SARS-CoV-2 spike antibody positivity on infection and hospitalisation rates in immunosuppressed populations during the omicron period: the MELODY study
2025
In the UK, booster COVID-19 vaccinations have been recommended biannually to people considered immune vulnerable. We investigated, at a population level, whether the absence of detectable anti-SARS-CoV-2 spike protein IgG antibody (anti-S Ab) following three or more vaccinations in immunosuppressed individuals was associated with greater risks of infection and severity of infection.
In this prospective cohort study using UK national disease registers, we recruited participants with solid organ transplants (SOTs), rare autoimmune rheumatic diseases (RAIRDs), and lymphoid malignancies. All participants were tested for anti-S Ab using a lateral flow immunoassay, completed a questionnaire on sociodemographic and clinical characteristics, and were followed up for 6 months using linked data from the National Health Service in England. SARS-CoV-2 infection was primarily defined using UK Health Security Agency data and supplemented with hospitalisation and therapeutics data, and hospitalisation due to SARS-CoV-2 was defined as an admission within 14 days of a positive test.
Between Dec 7, 2021, and June 26, 2022, we recruited 21 575 participants. Anti-S Ab was detected in 6519 (77·0%) of 8466 participants with SOTs, 5594 (85·9%) of 6516 with RAIRDs, and 5227 (79·3%) of 6593 with lymphoid malignancies. COVID-19 infection was recorded in 3907 (18·5%) participants, with 556 requiring a COVID-19-related hospital admission and 17 dying within 28 days of infection. Rates of infection varied by sociodemographic and clinical characteristics but, in adjusted analysis, having detectable anti-S Ab was independently associated with a reduced incidence of infection, with incident rate ratios (IRRs) of 0·69 (95% CI 0·65–0·73) in the SOT cohort, 0·57 (0·49–0·67) in the RAIRD cohort, and 0·62 (0·54–0·71) in the lymphoid malignancy cohort. In adjusted analysis, having detectable anti-S Ab was also associated with a reduced incidence of hospitalisation, with IRRs of 0·40 (0·35–0·46) in the SOT cohort, 0·32 (0·22–0·46) in the RAIRD cohort, and 0·41 (0·29–0·58) in the lymphoid malignancy cohort.
All people with immunosuppression require ongoing access to COVID-19 protection strategies. Assessment of anti-S Ab responses, which can be performed at scale, can identify people with immunosuppression who remain most at risk, providing a mechanism to further individualise protection approaches.
UK Research and Innovation, Kidney Research UK, Blood Cancer UK, Vasculitis UK, and Cystic Fibrosis Trust.
Journal Article
Two approaches to tackling COVID-19 in patients with blood cancer
2023
Patients with blood cancer have fewer antibodies after SARS-CoV-2 vaccination — but recent work shows that these antibodies seem to bind to viral spike protein more strongly than those in matched controls. In addition, another study finds that convalescent or vaccinee plasma might improve COVID-19 outcomes in those with blood cancer.
Journal Article
A Robust, High-Titer, Semi-Automated, and In-Culture Antibody-Capturing Transient CHO Platform Technology
2025
Background: Recent advances in antibody discovery technologies, especially progress in de novo synthesis through machine learning, have imposed a significant production challenge for the generation of a large diversity of antibodies against nearly any target of interest. There is a demand for the rapid production of dozens of purified antibodies in 10-milligram quantities sufficient for functional screening and molecular assessment studies. Objectives: To meet this requirement, a semi-automated production methodology and workflow was developed to bridge the miniaturized high-throughput screenings (HTSs) and the conventional custom-scale workflow by taking advantage of four new technology applications. Methods: First, it exploited a novel, simple, high-titer transient expression system, “CHO4Tx®”, which could achieve high yields in the range of 200 mg/L and above, across a variety of antibody constructs, including challenging targets. The consistently high yields from this transient CHO platform enabled the delivery of ~20 mg of crude material per 100 mL scale flask production with a throughput capacity of nineteen constructs in a single run. Secondly, we established a magnetic ProA bead in-culture antibody-capturing process, which significantly shortened the production timeline by eliminating the steps of cell centrifugation, filtration, and medium column loading. Third, we utilized the GenScript AmMag™ SA Plus semi-automation, which could handle magnetic ProA bead elution for 12 constructs within less than 1 h. Lastly, we transformed the AKTA PureTM system into an automated buffer exchange purification system with a capacity of processing 19 samples in a single run. Results and Conclusions: This new production platform was proven to be robust and could be applied for the routine production of antibodies of sufficient quality and quantity in support of cell-based assays and biophysical characterization.
Journal Article
Metabolic Engineering of Glycofusion Bispecific Antibodies for α-Dystroglycanopathies
2024
Background: α-dystroglycanopathies are congenital muscular dystrophies in which genetic mutations cause the decrease or absence of a unique and complex O-linked glycan called matriglycan. This hypoglycosylation of O-linked matriglycan on the α-dystroglycan (α-DG) protein subunit abolishes or reduces the protein binding to extracellular ligands such as laminins in skeletal muscles, leading to compromised survival of muscle cells after contraction. Methods: Surrogate molecular linkers reconnecting laminin-211 and the dystroglycan β-subunit through bispecific antibodies can be engineered to improve muscle function in the α-dystroglycanopathies. This study reports the metabolic engineering of a novel glycofusion bispecific (GBi) antibody that fuses the mucin-like domain of the α-DG to the light chain of an anti-β-DG subunit antibody. Results: Transient HEK production with the co-transfection of LARGE1, the glycoenzyme responsible for the matriglycan modification, produced the GBi antibody only with a light matriglycan modification and a weak laminin-211 binding activity. However, when a sugar feed mixture of uridine, galactose, and manganese ion (Mn2+) was added to the culture medium, the GBi antibody produced exhibited a dramatically enhanced matriglycan modification and a much stronger laminin-binding activity. Conclusions: Further investigation has revealed that Mn2+ in the sugar feeds played a critical role in increasing the matriglycan modification of the GBi antibody, key for the function of the resulting bispecific antibody.
Journal Article
Augmentation of CD134 (OX40)-dependent NK anti-tumour activity is dependent on antibody cross-linking
2018
CD134 (OX40) is a member of the tumour necrosis factor receptor superfamily (TNFRSF). It acts as a costimulatory receptor on T cells, but its role on NK cells is poorly understood. CD137, another TNFRSF member has been shown to enhance the anti-tumour activity of NK cells in various malignancies. Here, we examine the expression and function of CD134 on human and mouse NK cells in B-cell lymphoma. CD134 was transiently upregulated upon activation of NK cells in both species. In contrast to CD137, induction of CD134 on human NK cells was dependent on close proximity to, or cell-to-cell contact with, monocytes or T cells. Stimulation with an agonistic anti-CD134 mAb but not CD134 ligand, increased IFNγ production and cytotoxicity of human NK cells, but this was dependent on simultaneous antibody:Fcγ receptor binding. In complementary murine studies, intravenous inoculation with BCL
1
lymphoma into immunocompetent syngeneic mice resulted in transient upregulation of CD134 on NK cells. Combination treatment with anti-CD20 and anti-CD134 mAb produced a synergistic effect with durable remissions. This therapeutic benefit was abrogated by NK cell depletion and in Fcγ chain −/− mice. Hence, anti-CD134 agonists may enhance NK-mediated anti-tumour activity in an Fcγ receptor dependent fashion.
Journal Article
Chemotherapy: Advanced Hodgkin lymphoma--balancing toxicity and cure
by
Lim, Sean H
,
Johnson, Peter W M
in
Antineoplastic Combined Chemotherapy Protocols - administration & dosage
,
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
,
Bleomycin - administration & dosage
2011
Journal Article