Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
553 result(s) for "Lin, Hai-Yan"
Sort by:
Single-cell RNA-seq reveals the diversity of trophoblast subtypes and patterns of differentiation in the human placenta
The placenta is crucial for a successful pregnancy and the health of both the fetus and the pregnant woman. However, how the human trophoblast lineage is regulated, including the categorization of the placental cell subtypes is poorly understood. Here we performed single-cell RNA sequencing (RNA-seq) on sorted placental cells from first- and second-trimester human placentas. New subtypes of cells of the known cytotrophoblast cells (CTBs), extravillous trophoblast cells (EVTs), Hofbauer cells, and mesenchymal stromal cells were identified and cell-type-specific gene signatures were defined. Functionally, this study revealed many previously unknown functions of the human placenta. Notably, 102 polypeptide hormone genes were found to be expressed by various subtypes of placental cells, which suggests a complex and significant role of these hormones in regulating fetal growth and adaptations of maternal physiology to pregnancy. These results document human placental trophoblast differentiation at single-cell resolution and thus advance our understanding of human placentation during the early stage of pregnancy.
Histone deacetylase 9 deficiency exaggerates uterine M2 macrophage polarization
The maternal‐foetal interface is an immune‐privileged site where the semi‐allogeneic embryo is protected from attacks by the maternal immune system. Uterine macrophages are key players in establishing and maintaining pregnancy, and the dysregulation of the M1‐M2 subpopulation balance causes abortion. We separated two distinct mouse uterine macrophage subpopulations during early pregnancy, CD45+F4/80+CD206− M1‐like (M1) and CD45+F4/80+CD206+ M2‐like (M2) cells. The M1 preponderance was significantly exaggerated at 6 hours after lipopolysaccharide (LPS) treatment, and adoptive transfer of M2 macrophages partially rescued LPS‐induced abortion. RNA sequencing analysis of mouse uterine M2 versus M1 revealed 1837 differentially expressed genes (DEGs), among which 629 was up‐regulated and 1208 was down‐regulated. Histone deacetylase 9 (Hdac9) was one of the DEGs and validated to be significantly up‐regulated in uterine M2 as compared with M1. Remarkably, this differential expression profile between M1 and M2 was also evident in primary splenic macrophages and in vitro polarized murine peritoneal, bone marrow–derived and RAW 264.7 macrophages. In Hdac9/HDAC9 knockout RAW 264.7 and human THP‐1–derived macrophages, the expression of M1 differentiation markers was unchanged or decreased whereas M2 markers were increased compared with the wild‐type cells, and these effects were unrelated to compromised proliferation. Furthermore, Hdac9/HDAC9 ablation significantly enhanced the phagocytosis of fluorescent microspheres in M2 Raw 264.7 cells yet decreased the capacity of THP‐1‐derived M1 macrophages. The above results demonstrate that Hdac9/HDAC9 deficiency exaggerates M2 macrophage polarization in mouse and human macrophages, which may provide clues for our understanding of the epigenetic regulation on macrophage M1/M2 polarization in maternal‐foetal tolerance.
Comparison of the triglyceride glucose index and blood leukocyte indices as predictors of metabolic syndrome in healthy Chinese population
Triglyceride glucose (TyG) index and inflammatory markers are reported to have a positive association with metabolic syndrome (MetS). However, no previous study has assessed the value of TyG index and inflammatory markers as predictors of metabolic syndrome in the same study. This study looks at the comparison of the triglyceride index and blood leukocyte indices as predictors of metabolic syndrome in the Chinese population. The study cohort involved 1542 Chinese population without metabolic syndrome. The subjects underwent comprehensive routine health examination in 2011 and returned for a follow-up examination in 2016. Metabolic syndrome was defined according to Chinese Diabetes Society criteria, using body mass index for the replacement of waist circumference. TyG index, total leukocytes, neutrophils, lymphocytes, and neutrophil-to-lymphocyte ratio (NLR) were measured. Adjust d logistic models were used to assess the relationship between TyG index, blood leukocyte indices, and incident MetS. Receiver operating characteristic (ROC) curves were performed to determine the predictive value of TyG index and blood leukocyte indices for MetS. Results from multivariate logistic regression analysis showed that, in the adjusted model, the subjects with the highest quartile of TyG index and neutrophils had a 3.894- and 1.663-fold increased incidence of MetS ( P  < 0.0001 and P  = 0.027), respectively. No significant association was observed between total leukocytes, lymphocytes, NLR with incident MetS. ROC analysis showed that the AUC of TyG index and neutrophils were 0.674 and 0.568 for incident MetS, respectively. TyG index rather than blood leukocyte indices may have the strongest predictive value in MetS development over a 5-year period.
The Entomopathogenic Fungus Beauveria bassiana Employs Autophagy as a Persistence and Recovery Mechanism during Conidial Dormancy
Conidial environmental persistence is essential for fungal dispersal in ecosystems while also serving as a determinant for the biocontrol efficacy of entomopathogenic fungi during integrated pest management. This study identified autophagy as a mechanism to safeguard conidial lifespans and vitality postmaturation. Many filamentous fungi develop a conidiation process as an essential mechanism for their dispersal and survival in natural ecosystems. However, the mechanisms underlying conidial persistence in environments are still not fully understood. Here, we report that autophagy is crucial for conidial lifespans (i.e., viability) and vitality (e.g., stress responses and virulence) in the filamentous mycopathogen Beauveria bassiana . Specifically, Atg11-mediated selective autophagy played an important, but not dominant, role in the total autophagic flux. Furthermore, the aspartyl aminopeptidase Ape4 was found to be involved in conidial vitality during dormancy. Notably, the vacuolar translocation of Ape4 was dependent on its physical interaction with autophagy-related protein 8 (Atg8) and associated with the autophagic role of Atg8, as determined through a truncation assay of a critical carboxyl-tripeptide. These observations revealed that autophagy acted as a subcellular mechanism for conidial recovery during dormancy in environments. In addition, a novel Atg8-dependent targeting route for vacuolar hydrolase was identified, which is essential for conidial exit from a long-term dormancy. These new insights improved our understanding of the roles of autophagy in the physiological ecology of filamentous fungi as well as the molecular mechanisms involved in selective autophagy. IMPORTANCE Conidial environmental persistence is essential for fungal dispersal in ecosystems while also serving as a determinant for the biocontrol efficacy of entomopathogenic fungi during integrated pest management. This study identified autophagy as a mechanism to safeguard conidial lifespans and vitality postmaturation. In this mechanism, the aspartyl aminopeptidase Ape4 translocates into vacuoles via its physical interaction with autophagy-related protein 8 (Atg8) and is involved in conidial vitality during survival. The study revealed that autophagy acted as a subcellular mechanism for maintaining conidial persistence during dormancy, while also documenting an Atg8-dependent targeting route for vacuolar hydrolase during conidial recovery from dormancy. Thus, these observations provided new insight into the roles of autophagy in the physiological ecology of filamentous fungi and documented novel molecular mechanisms involved in selective autophagy.
Triclabendazole Induces Pyroptosis by Activating Caspase-3 to Cleave GSDME in Breast Cancer Cells
Pyroptosis is a form of programmed cell death, in which gasdermin E (GSDME) plays an important role in cancer cells, which can be induced by activated caspase-3 on apoptotic stimulation. Triclabendazole is a new type of imidazole in fluke resistance and has been approved by the FDA for the treatment of fascioliasis and its functions partially acting through apoptosis-related mechanisms. However, it remains unclear whether triclabendazole has obvious anti-cancer effects on breast cancer cells. In this study, to test the function of triclabendazole on breast cancer, we treated breast cancer cells with triclabendazole and found that triclabendazole induced lytic cell death in MCF-7 and MDA-MB-231, and the dying cells became swollen with evident large bubbles, a typical sign of pyroptosis. Triclabendazole activates apoptosis by regulating the apoptoic protein levels including Bax, Bcl-2, and enhanced cleavage of caspase-8/9/3/7 and PARP. In addition, enhanced cleavage of GSDME was also observed, which indicates the secondary necrosis/pyroptosis is further induced by active caspase-3. Consistent with this, triclabendazole-induced GSDME–N-terminal fragment cleavage and pyroptosis were reduced by caspase-3–specific inhibitor (Ac-DEVD-CHO) treatment. Moreover, triclabendazole induced reactive oxygen species (ROS) elevation and increased JNK phosphorylation and lytic cell death, which could be rescued by the ROS scavenger (NAC), suggesting that triclabendazole-induced GSDME-dependent pyroptosis is related to the ROS/JNK/Bax-mitochondrial apoptotic pathway. Besides, we showed that triclabendazole significantly reduced the tumor volume by promoting the cleavage of caspase-3, PARP, and GSDME in the xenograft model. Altogether, our results revealed that triclabendazole induces GSDME-dependent pyroptosis by caspase-3 activation at least partly through augmenting the ROS/JNK/Bax-mitochondrial apoptotic pathway, providing insights into this on-the-market drug in its potential new application in cancer treatment.
Endoscopic morphology of gastric MALT lymphoma correlate with API2/MALT1 fusion and predict treatment response after helicobacter pylori eradication
Background The presence of API2/MALT1 fusion in gastric mucosa-associated lymphoid tissue (MALT) lymphoma predicts poor response to Helicobacter pylori (Hp) eradication therapy. This study aimed to assess the correlation between endoscopic morphology of MALT lymphoma and API2/MALT1 fusion and evaluate treatment response to Hp eradication based on morphological subtypes. Methods A retrospective review was conducted on patients diagnosed with gastric MALT lymphoma between January 2011 and December 2022. Endoscopic morphology was categorized as superficial, non-superficial, or mixed type. The superficial type was further classified into gastritis superficial lesion and localized superficial lesion based on border clarity. Logistic regression models evaluated the impact of clinical and endoscopic characteristics on anti-Hp therapy effectiveness. Results Among the 114 patients included, 93 (81.6%) were Hp-positive, and API2/MALT1 fusion was detected in 58 (50.9%) cases, The superficial type was the predominate morphology (73/114, 64%). The regular arrangement of collecting venules (RAC) sign was noted in 21 (18.4%) cases. In superficial subtypes, the RAC signs were more frequently observed in localized lesion than gastritis lesion (35.6% vs. 7.1%, p  = 0.01). and the superficial localized lesion was more common in individuals with positive API/MALT1 fusion than negative ones (76.9% vs. 44.1%, p  = 0.01). Following Hp eradication, the remission rate for localized lesion was 34.3%, significantly lower than for gastritis lesion (66.7%, p  = 0.01). Both endoscopic morphology (OR = 0.26, 95% CI 0.09–0.75) and API2-MALT1 fusion (OR = 14.29, 95% CI 4.19–48.67) impacted the efficacy of anti-Hp therapy. However, multivariate analysis identified API2-MALT1 fusion as the only independent predictor of treatment outcome (OR = 12.18, 95% CI 3.49–42.55, p  < 0.001). Conclusion Gastric MALT lymphomas with superficial-type morphology, particularly those with defined borders resembling early gastric cancer, were associated with API2/MALT1 fusion and a lower remission rate after Hp eradication therapy. This suggests that endoscopic morphology, along with API2/MALT1 fusion status, could help predict the therapeutic response, with API2/MALT1 fusion serving as a critical indicator of treatment resistance.
Avian corticosteroid-binding globulin: biological function and regulatory mechanisms in physiological stress responses
Corticosteroid-binding globulin (CBG) is a high-affinity plasma protein that binds glucocorticoids (GCs) and regulates their biological activities. The structural and functional properties of CBG are crucial to understanding the biological actions of GCs in mediating stress responses and the underlying mechanisms. In response to stress, avian CBGs modulate the free and bound fractions of plasma corticosterone (CORT, the main GC), enabling them to mediate the physiological and behavioral responses that are fundamental for balancing the trade-off of energetic investment in reproduction, immunity, growth, metabolism and survival, including adaptations to extreme high-elevation or high-latitude environments. Unlike other vertebrates, avian CBGs substitute for sex hormone-binding globulin (SHBG) in transporting androgens and regulating their bioavailability, since birds lack an Shbg gene. The three-dimensional structures of avian and mammalian CBGs are highly conserved, but the steroid-binding site topographies and their modes of binding steroids differ. Given that CBG serves as the primary transporter of both GCs and reproductive hormones in birds, we aim to review the biological properties of avian CBGs in the context of steroid hormone transportation, stress responses and adaptation to harsh environments, and to provide insight into evolutionary adaptations in CBG functions occurred to accommodate physiological and endocrine changes in birds compared with mammals.
The impact of albumin infusion on the risk of rebleeding and in-hospital mortality in cirrhotic patients admitted for acute gastrointestinal bleeding: a retrospective study of a single institute
Background To investigate the effect of albumin infusion on cirrhotic patients admitted for acute gastrointestinal bleeding. Methods Medical records of cirrhotic patients who admitted due to acute gastrointestinal bleeding through January 2009 to December 2018 were reviewed. Clinical data and the total amount of albumin and red blood cell used during hospitalization were recorded. For patients with rebleeding, the amount of albumin and red blood cell used before rebleeding was also documented. The primary outcome was the occurrence of rebleeding, and the second outcome was in-hospital mortality. Univariate and multivariate logistic analysis was performed to identify risk factors associated with rebleeding and in-hospital mortality. Results A total of 1503 cirrhotic patients were included in the analysis. There were 146 episodes of in-patient rebleeding occurred, while 81 patients died. Overall, more red blood cells and albumin were prescribed to patients who suffered rebleeding. In terms of the amount before rebleeding, the red blood cell was higher in patients with rebleeding, but the albumin infusion was similar. In the multivariate model, the albumin infusion before rebleeding was an independent risk factor associated with rebleeding (adjusted OR for ≤40 g vs 0 g, 0.469 [0.269–0.793], p  = 0.006; adjusted OR for > 40 g vs 0 g, 0.272 [0.115–0.576], p  = 0.001). In Child-Pugh C class patients, the use of albumin more than 40 g during hospitalization associated with a lower risk of in-patient mortality (adjusted OR for > 40 g vs 0 g, 0.136 [0.019–0.741], p  = 0.031). Conclusions Albumin infusion was associated with a lower risk of rebleeding and in-hospital deaths in cirrhosis admitted for acute gastrointestinal bleeding.
HapX, an Indispensable bZIP Transcription Factor for Iron Acquisition, Regulates Infection Initiation by Orchestrating Conidial Oleic Acid Homeostasis and Cytomembrane Functionality in Mycopathogen Beauveria bassiana
Conidial maturation and germination are highly coupled physiological processes in filamentous fungi that are critical for the pathogenicity of mycopathogens. Compared to the mechanisms involved in conidial germination, those of conidial reserves during maturation are less understood. The insect-pathogenic fungus Beauveria bassiana , as a representative species of filamentous fungi, is important for applied and fundamental research. In addition to its conserved roles in fungal adaptation to iron status, the bZIP transcription factor HapX acts as a master regulator involved in conidial virulence and regulates fatty acid/lipid metabolism. Further investigation revealed that the Δ9-fatty acid desaturase gene ( Ole1 ) is a direct downstream target of HapX. This study reveals the HapX-Ole1 pathway involved in the fatty acid/lipid accumulation associated with conidial maturation and provides new insights into the startup mechanism of infection caused by spores from pathogenic fungi. In pathogenic filamentous fungi, conidial germination not only is fundamental for propagation in the environment but is also a critical step of infection. In the insect mycopathogen Beauveria bassiana , we genetically characterized the role of the basic leucine zipper (bZIP) transcription factor HapX ( BbHapX ) in conidial nutrient reserves and pathogen-host interaction. Ablation of BbHapX resulted in an almost complete loss of virulence in the topical inoculation and intrahemocoel injection assays. Comparative transcriptomic analysis revealed that BbHapX is required for fatty acid (FA)/lipid metabolism, and biochemical analyses indicated that BbHapX loss caused a significant reduction in conidial FA contents. Exogenous oleic acid could partially or completely restore the impaired phenotypes of the Δ BbHapX mutant, including germination rate, membrane integrity, vegetative growth, and virulence. BbHapX mediates fungal iron acquisition which is not required for desaturation of stearic acid. Additionally, inactivation of the Δ9-fatty acid desaturase gene ( BbOle1 ) generated defects similar to those of the Δ BbHapX mutant; oleic acid also had significant restorative effects on the defective phenotypes of the Δ BbOle1 mutant. A gel retarding assay revealed that BbHapX directly regulated the expression of BbOle1 . Lipidomic analyses indicated that both BbHapX and BbOle1 contributed to the homeostasis of phospholipids with nonpolar tails derived from oleic acid; therefore, exogenous phospholipids could significantly restore membrane integrity. These data reveal that the HapX-Ole1 pathway contributes to conidial fatty acid/lipid reserves and that there are important links between the lipid biology and membrane functionality involved in the early stages of infection caused by B. bassiana . IMPORTANCE Conidial maturation and germination are highly coupled physiological processes in filamentous fungi that are critical for the pathogenicity of mycopathogens. Compared to the mechanisms involved in conidial germination, those of conidial reserves during maturation are less understood. The insect-pathogenic fungus Beauveria bassiana , as a representative species of filamentous fungi, is important for applied and fundamental research. In addition to its conserved roles in fungal adaptation to iron status, the bZIP transcription factor HapX acts as a master regulator involved in conidial virulence and regulates fatty acid/lipid metabolism. Further investigation revealed that the Δ9-fatty acid desaturase gene ( Ole1 ) is a direct downstream target of HapX. This study reveals the HapX-Ole1 pathway involved in the fatty acid/lipid accumulation associated with conidial maturation and provides new insights into the startup mechanism of infection caused by spores from pathogenic fungi.
Tea consumption and colorectal cancer risk: a meta-analysis of prospective cohort studies
Purpose Data from in vitro and animal studies support the preventive effect of tea ( Camellia sinensis ) against colorectal cancer. Further, many epidemiologic studies evaluated the association between tea consumption and colorectal cancer risk, but the results were inconsistent. We conducted a meta-analysis of prospective cohort studies to systematically assess the association between tea consumption and colorectal cancer risk. Methods A comprehensive literature review was conducted to identify the related articles by searching PubMed and Embase up to June, 2019. Summary relative risks (RRs) and 95% confidence intervals (CIs) were calculated using a fixed effect model. Results Twenty cohort articles were included in the present meta-analysis involving 2,068,137 participants and 21,437 cases. The combined RR of colorectal cancer for the highest vs. lowest tea consumption was determined to 0.97 (95% CI 0.94–1.01) with marginal heterogeneity ( I 2  = 24.0%, P  = 0.093) among all studies. This indicated that tea consumption had no significant association with colorectal cancer risk. Stratified analysis showed that no significant differences were found in all subgroups. We further conducted the gender-specific meta-analysis for deriving a more precise estimation. No significant association was observed between tea consumption and colorectal cancer risk in male (combined RR = 0.97; 95% CI 0.90–1.04). However, tea consumption had a marginal significant inverse impact on colorectal cancer risk in female (combined RR = 0.93; 95% CI 0.86–1.00). Further, we found a stronger inverse association between tea consumption and risk of colorectal cancer among the female studies with no adjustment of coffee intake (RR: 0.90; 95% CI 0.82–1.00, P  < 0.05) compared to the female studies that adjusted for coffee intake (RR = 0.97; 95% CI 0.87–1.09, P  > 0.05). Conclusions Our finding indicates that tea consumption has no significant impact on the colorectal cancer risk in both genders combined, but gender-specific meta-analysis shows that tea consumption has a marginal significant inverse impact on colorectal cancer risk in female.