Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
51 result(s) for "Lin, Hanzhi"
Sort by:
What limits photosynthetic energy conversion efficiency in nature? Lessons from the oceans
Constraining photosynthetic energy conversion efficiency in nature is challenging. In principle, two yield measurements must be made simultaneously: photochemistry, fluorescence and/or thermal dissipation. We constructed two different, extremely sensitive and precise active fluorometers: one measures the quantum yield of photochemistry from changes in variable fluorescence, the other measures fluorescence lifetimes in the picosecond time domain. By deploying the pair of instruments on eight transoceanic cruises over six years, we obtained over 200 000 measurements of fluorescence yields and lifetimes from surface waters in five ocean basins. Our results revealed that the average quantum yield of photochemistry was approximately 0.35 while the average quantum yield of fluorescence was approximately 0.07. Thus, closure on the energy budget suggests that, on average, approximately 58% of the photons absorbed by phytoplankton in the world oceans are dissipated as heat. This extraordinary inefficiency is associated with the paucity of nutrients in the upper ocean, especially dissolved inorganic nitrogen and iron. Our results strongly suggest that, in nature, most of the time, most of the phytoplankton community operates at approximately half of its maximal photosynthetic energy conversion efficiency because nutrients limit the synthesis or function of essential components in the photosynthetic apparatus. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement’.
Difference in light use strategy in red alga between Griffithsia pacifica and Porphyridium purpureum
Phycobilisomes (PBSs) are the largest light-harvesting antenna in red algae, and feature high efficiency and rate of energy transfer even in a dim environment. To understand the influence of light on the energy transfer in PBSs, two red algae Griffithsia pacifica and Porphyridium purpureum living in different light environment were selected for this research . The energy transfer dynamics in PBSs of the two red algae were studied in time-resolved fluorescence spectroscopy in sub-picosecond resolution. The energy transfer pathways and the related transfer rates were uncovered by deconvolution of the fluorescence decay curve. Four time-components, i.e., 8 ps, 94 ps, 970 ps, and 2288 ps were recognized in the energy transfer in PBSs of G. pacifica, and 10 ps, 74 ps, 817 ps and 1292 ps in P. purpureum. In addition, comparison in energy transfer dynamics between the two red algae revealed that the energy transfer was clearly affected by lighting environment. The findings help us to understand the energy transfer mechanisms of red algae for adaptation to a natural low light environment.
Structure and variation of root-associated bacterial communities of Cyperus rotundus L. in the contaminated soils around Pb/Zn mine sites
Soil contamination due to mining activities is a great concern in China. Although the effects of mining pollution resulting in changes of soil characteristics and the microbiome have been documented, studies on the responses of plant root-associated microbial assemblages remain scarce. In this work, we collected bulk soil, rhizosphere soil, and root endosphere samples of Cyperus rotundus L ( Cyp ) plants from two Pb/Zn mines, of which, one was abandoned (SL) and the other was active (GD), to investigate the bacterial community responses across different site contamination levels and Cyp plant compartments. For comparison, one unpolluted site (SD) was included. Results revealed that soils from the SL and GD sites were seriously contaminated by metal(loid)s, including Pb, Zn, As, and Sb. Bacterial richness and diversity depended on the sampling site and plant compartment. All sample types from the SL site had the lowest bacterial diversities and their bacterial communities also exhibited distinct patterns compared to GD and SD samples. As for the specific sampling site, bacterial communities from the root endosphere exhibited different patterns from those in bulk and rhizosphere soil. Compared to the GD and SD sites, the root endosphere and the rhizosphere soil from the SL site shared core microbes, including Halomonas , Pelagibacterium , and Chelativorans , suggesting that they play key roles in Cyp plant survival in such harsh environments.
Assessment of Radiometric Calibration Consistency of Thermal Emissive Bands Between Terra and Aqua Moderate-Resolution Imaging Spectroradiometers
Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors onboard the Terra and Aqua spacecraft have been in orbit for over 24 and 22 years, respectively, providing continuous observations of the Earth’s surface. Among the instrument’s 36 bands, 16 of them are thermal emissive bands (TEBs) with wavelengths that range from 3.75 to 14.24 μm. Routine post-launch calibrations are performed using the sensor’s onboard blackbody and space view port, the moon, and vicarious targets that include the ocean, Dome Concordia (Dome C) in Antarctica, and quasi-deep convective clouds (DCC). The calibration consistency between the satellite measurements from the two instruments is essential in generating a multi-year data record for the long-term monitoring of the Earth’s Level 1B (L1B) data. This paper presents the Terra and Aqua MODIS TEB comparison for the upcoming Collection 7 (C7) L1B products using measurements over Dome C and the ocean, as well as the double difference via simultaneous nadir overpasses with the Infrared Atmospheric Sounding Interferometer (IASI) sensor. The mission-long trending of the Terra and Aqua MODIS TEB is presented, and their cross-comparison is also presented and discussed. Results show that the calibration of the two MODIS sensors and their respective Earth measurements are generally consistent and within their design specifications. Due to the electronic crosstalk contamination, the PV LWIR bands show slightly larger drifts for both MODIS instruments across different Earth measurements. These drifts also have an impact on the Terra-to-Aqua calibration consistency. This thorough assessment serves as a robust record containing a summary of the MODIS calibration performance and the consistency between the two MODIS sensors over Earth view retrievals.
Citric acid and AMF inoculation combination–assisted phytoextraction of vanadium (V) by Medicago sativa in V mining contaminated soil
The use of citric acid (CA) chelator to facilitate metal bioavailability is a promising approach for the phytoextraction of heavy metal contaminants. However, the role of the CA chelator associated with arbuscular mycorrhizal fungi (AMF) inoculation on phytoextraction of vanadium (V) has not been studied. Therefore, in this study, a greenhouse pot experiment was conducted to evaluate the combined effect of CA chelator and AMF inoculation on growth performance and V phytoextraction of plants in V-contaminated soil. The experiment was performed via CA (at 0, 5, and 10 mM kg -1 soil levels) application alone or in combination with AMF inoculation by Medicago sativa Linn. ( M. sativa ). Plant biomass, root mycorrhizal colonization, P and V accumulation, antioxidant enzyme activity in plants, and soil chemical speciation of V were evaluated. Results depicted (1) a marked decline in plant biomass and root mycorrhizal colonization in 5- and 10-mM CA treatments which were accompanied by a significant increased V accumulation in plant tissues. The effects could be attributed to the enhanced acid-soluble V fraction transferring from the reducible fraction. (2) The presence of CA significantly enhanced P acquisition while the P/V concentration ratio in plant shoots and roots decreased, owing to the increased V translocation from soil to plant. (3) In both CA-treated soil, AMF-plant symbiosis significantly improved dry weight (31.4–73.3%) and P content (37.3–122.5%) in shoots and roots of M. sativa . The combined treatments also showed markedly contribution in reduction of malondialdehyde (MDA) content (12.8–16.2%) and higher antioxidants (SOD, POD, and CAT) activities in the leaves. This suggests their combination could promote growth performance and stimulate antioxidant response to alleviate V stress induced by CA chelator. (4) Taken together, 10 mM kg -1 CA application and AMF inoculation combination exhibited a higher amount of extracted V both in plant shoots and roots. Thus, citric acid–AMF–plant symbiosis provides a novel remediation strategy for in situ V phytoextraction by M. sativa in V-contaminated soil.
A Functionalized Silicate Adsorbent and Exploration of Its Adsorption Mechanism
Active silicate materials have good adsorption and passivation effects on heavy metal pollutants. The experimental conditions for the preparation of active silicate heavy metal adsorbent (ASHMA) and the adsorption of Cu(II) by ASHMA were investigated. The optimum preparation conditions of ASHMA were as follows: 200 mesh quartz sand as the raw material, NaOH as an activating agent, NaOH/quartz sand = 0.45 (mass fraction), and calcination at 600 °C for 60 min. Under these conditions, the active silicon content of the adsorbent was 22.38% and the utilization efficiency of NaOH reached 89.11%. The adsorption mechanism of Cu(II) on the ASHMA was analyzed by the Langmuir and Freundlich isotherm models, which provided fits of 0.99 and 0.98, respectively. The separation coefficient (RL) and adsorption constant (n) showed that the adsorbent favored the adsorption of Cu(II), and the maximum adsorption capacity (Qmax) estimated by the Langmuir isotherm was higher than that of 300 mg/L. Furthermore, adsorption by ASHMA was a relatively rapid process, and adsorption equilibrium could be achieved in 1 min. The adsorbents were characterized by FT-IR and Raman spectroscopy. The results showed that the activating agent destroyed the crystal structure of the quartz sand under calcination, and formed Si-O-Na and Si-OH groups to realize activation. The experimental results revealed that the adsorption process involved the removal of Cu(II) by the formation of Si-O-Cu bonds on the surface of the adsorbent. The above results indicated that the adsorbent prepared from quartz sand had a good removal effect on Cu(II).
Glomalin-related soil protein (GRSP) in metal sequestration at Pb/Zn-contaminated sites
PurposeGlomalin-related soil protein (GRSP), secreted by arbuscular mycorrhizal fungi (AMF), contributes to heavy metal sequestration in polluted soils and sediments. The objective of this study was to investigate metal sequestration by GRSP associated with the plants Miscanthus sinensis, Cyperus rotundus, and Pteris vittata.Materials and methodsA total of 45 rhizosphere soil and plant root samples were collected from three plants at two Pb/Zn mining polluted and non-polluted sites in China. Soil samples were analyzed for total and bioavailable heavy metal (Cr, Cu, Cd, Pb, Zn, As, Sb, and Ni) concentration, chemical properties (SOC, TN, TP, TS, Olsen-P, and available K), and GRSP concentration. The contribution of GRSP-bound metals and its sequestration potential were calculated to assess the metal sequestration ability of GRSP.Results and discussionMycorrhizal root colonization of P. vittata was significantly higher than that of M. sinensis and C. rotundus at three sites. P. vittata also exhibited significantly more GRSP accumulation than the other two plants in soil. The significant negative correlation between GRSP and the combined indicators of eight bioavailable (r =  − 0.60, p < 0.001) or total (r =  − 0.39, p < 0.01) metals’ concentration was found. Averaged across the polluted sites, in P. vittata soil, GRSP showed a higher contribution to sequestering most heavy metals (Cu, Cd, Pb, Zn, As, Sb, and Ni), compared with that in M. sinensis and C. rotundus soil, although the sequestration potential descended in the order of C. rotundus > P. vittata > M. sinensis.ConclusionsAMF-P. vittata symbiosis presented higher contribution to sequestering most metals by GRSP in the contaminated sites when compared with the plants M. sinensis and C. rotundus. This study sheds light on the ecological function of GRSP sequestration of metals associated with mycorrhizal plants, and its contribution to reducing metal bioavailability in polluted sites.
Time-Resolved Fluorescence Spectroscopy Study of Energy Transfer Dynamics in Phycobilisomes from Cyanobacteria Thermosynechococcus vulcanus NIES 2134 and Synechocystis sp. PCC 6803
As the largest light-harvesting complex in cyanobacteria, phycobilisomes (PBSs) show high efficiency and a high rate of energy transfer, owing to an elegant antenna-like assembly. To understand the structural influence on the dynamic process of the energy transfer in PBSs, two cyanobacterium species Thermosynechococcus vulcanus NIES 2134 (T. 2134) and Synechocystis sp. PCC 6803 (S. 6803) with different rod–core-linked assemblies were chosen for this study. The dynamic process of the energy transfer in both PBSs was investigated through time-resolved fluorescence spectroscopy (TRFS) with a time resolution of sub-picosecond. Via the fluorescence decay curves deconvolution, the pathways and related rates of the excitation energy transfer (EET) were determined. Three time components, i.e., 10, 80, and 1250 ps, were identified in the EET in the PBSs of T. 2134 and three, i.e., 9, 115, and 1680 ps, in the EET in the PBSs of S. 6803. In addition, a comparison of the dynamic process of the energy transfer between the two cyanobacteria revealed how the PBS assembly affects the energy transfer in PBSs. The findings will provide insight into future time-resolved crystallography.
Effects of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS) on Soil Microbial Community
The extensive application of perfluoroalkyl and polyfluoroalkyl substances (PFASs) causes their frequent detection in various environments. In this work, two typical PFASs, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are selected to investigate their effects on soil microorganisms. Microbial community structure and microbe–microbe relationships were investigated by high-throughput sequencing and co-occurrence network analysis. Under 90 days of exposure, the alpha-diversity of soil microbial communities was increased with the PFOS treatment, followed by the PFOA treatment. The exposure of PFASs substantially changed the compositions of soil microbial communities, leading to the enrichment of more PFASs-tolerant bacteria, such as Proteobacteria, Burkholderiales, and Rhodocyclales. Comparative co-occurrence networks were constructed to investigate the microbe–microbe interactions under different PFASs treatments. The majority of nodes in the PFOA and PFOS networks were associated with the genus Azospirillum and Hydrogenophaga, respectively. The LEfSe analysis further identified a set of biomarkers in the soil microbial communities, such as Azospirillum, Methyloversatilis, Hydrogenophaga, Pseudoxanthomonas, and Fusibacter. The relative abundances of these biomarkers were also changed by different PFASs treatments. Functional gene prediction suggested that the microbial metabolism processes, such as nucleotide transport and metabolism, cell motility, carbohydrate transport and metabolism, energy production and conversion, and secondary metabolites biosynthesis transport and catabolism, might be inhibited under PFAS exposure, which may further affect soil ecological services.
Microbially mediated nutrient cycles in marine sponges
Efficient nutrient cycles mediated by symbiotic microorganisms with their hosts are vital to support the high productivity of coral reef ecosystems. In these ecosystems, marine sponges are important habitat-forming organisms in the benthic community and harbor abundant microbial symbionts. However, few studies have reviewed the critical microbially mediated nutrient cycling processes in marine sponges. To bridge this gap, in this review article, we summarize existing knowledge and recent advances in understanding microbially mediated carbon (C), nitrogen (N), phosphorus (P) and sulfur (S) cycles in sponges, propose a conceptual model that describes potential interactions and constraints in the major nutrient cycles, and suggest that shifting redox state induced by animal behavior like sponge pumping can exert great influence on the activities of symbiotic microbial communities. Constraints include the lack of knowledge on spatial and temporal variations and host behavior; more studies are needed in these areas. Sponge microbiomes may have a significant impact on the nutrient cycles in the world’s coral reef ecosystems.