Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
510 result(s) for "Lin, Jiahao"
Sort by:
Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization
Graphene has an extremely high in-plane strength yet considerable out-of-plane softness. High crystalline order of graphene assemblies is desired to utilize their in-plane properties, however, challenged by the easy formation of chaotic wrinkles for the intrinsic softness. Here, we find an intercalation modulated plasticization phenomenon, present a continuous plasticization stretching method to regulate spontaneous wrinkles of graphene sheets into crystalline orders, and fabricate continuous graphene papers with a high Hermans’ order of 0.93. The crystalline graphene paper exhibits superior mechanical (tensile strength of 1.1 GPa, stiffness of 62.8 GPa) and conductive properties (electrical conductivity of 1.1 × 10 5  S m −1 , thermal conductivity of 109.11 W m −1 K −1 ). We extend the ultrastrong graphene papers to the realistic laminated composites and achieve high strength combining with attractive conductive and electromagnetic shielding performance. The intercalation modulated plasticity is revealed as a vital state of graphene assemblies, contributing to their industrial processing as metals and plastics. Strong but flexible graphene tends to wrinkle, which compromises some properties. Here the authors report a solid plasticization method to prepare continuous graphene papers with high crystalline order, achieving high strength, stiffness, electrical and thermal conductivities.
The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems
The rapid spread of antibiotic resistance and lack of effective drugs for treating infections caused by multi-drug resistant bacteria in animal and human medicine have forced us to find new antibacterial strategies. Natural products have served as powerful therapeutics against bacterial infection and are still an important source for the discovery of novel antibacterial drugs. Curcumin, an important constituent of turmeric, is considered safe for oral consumption to treat bacterial infections. Many studies showed that curcumin exhibited antibacterial activities against Gram-negative and Gram-positive bacteria. The antibacterial action of curcumin involves the disruption of the bacterial membrane, inhibition of the production of bacterial virulence factors and biofilm formation, and the induction of oxidative stress. These characteristics also contribute to explain how curcumin acts a broad-spectrum antibacterial adjuvant, which was evidenced by the markedly additive or synergistical effects with various types of conventional antibiotics or non-antibiotic compounds. In this review, we summarize the antibacterial properties, underlying molecular mechanism of curcumin, and discuss its combination use, nano-formulations, safety, and current challenges towards development as an antibacterial agent. We hope that this review provides valuable insight, stimulates broader discussions, and spurs further developments around this promising natural product.
Bidirectionally promoting assembly order for ultrastiff and highly thermally conductive graphene fibres
Macroscopic fibres assembled from two-dimensional (2D) nanosheets are new and impressing type of fibre materials besides those from one-dimensional (1D) polymers, such as graphene fibres. However, the preparation and property-enhancing technologies of these fibres follow those from 1D polymers by improving the orientation along the fibre axis, leading to non-optimized microstructures and low integrated performances. Here, we show a concept of bidirectionally promoting the assembly order, making graphene fibres achieve synergistically improved mechanical and thermal properties. Concentric arrangement of graphene oxide sheets in the cross-section and alignment along fibre axis are realized by multiple shear-flow fields, which bidirectionally promotes the sheet-order of graphene sheets in solid fibres, generates densified and crystalline graphitic structures, and produces graphene fibres with ultrahigh modulus (901 GPa) and thermal conductivity (1660 W m −1 K −1 ). We believe that the concept would enhance both scientific and technological cognition of the assembly process of 2D nanosheets. Aligned 2D assembled fibres have been developed by drawing like 1D polymers, yet with disorders in cross-section. Here, the authors bidirectionally promote assembly order of graphene fibres, achieving high modulus and highly thermal conductivity.
Flow field design and experimental investigation of the electrochemical trepanning of a diffuser with a liquid-increasing seam
In the electrochemical trepanning of a diffuser, the electrolyte flow field should be designed in accordance with the blade structure to improve the machining stability, efficiency, and accuracy. However, the electrolyte flushing is poor because the blade leading edge is at the margin of the diffuser. To solve this problem, a new centerline method is proposed for designing a liquid-increasing seam, and a numerical model of the flow channel is established. Simulation results show that adding the newly designed liquid-increasing seam (i) eliminates the liquid-deficient zone and (ii) improves the uniformity of the flow field in the inter-electrode gap. Furthermore, the results of verification experiments conducted on the electrochemical trepanning of the diffuser show that the liquid-increasing seam improves the machining efficiency and accuracy significantly, with the feed rate increased from 0.8 to 1.5 mm/min, the taper angle decreased from 3.67° to 0.24°, and the surface roughness decreased from 3.633 to 0.951 μm. The results show that the new centerline method is effective.
Pd/Attapulgite Core–Shell Structured Catalytic Combustion Gas Sensor for Highly Sensitive Real-Time Methane Detection
Catalytic combustion gas sensors are critical for safety and environmental monitoring, yet face persistent challenges in sensitivity and detection limits amid expanding market demands. This study innovatively employs attapulgite as a support material functionalized with noble metal catalyst Pd to fabricate a low-cost, high-sensitivity sensor. Characterization (SEM/EDS) confirms a unique Pd/attapulgite core–shell structure with engineered Pd gradient distribution (7.5–75.8 wt% from core to surface). The sensor achieves methane catalytic combustion below 300 °C, delivering 0.7 µV/ppm sensitivity and ~36 ppm detection limit. Reaction kinetics follow the Eley–Rideal mechanism, with voltage difference (ΔU) versus methane concentration (C) conforming to the Langmuir equation (ΔU=Umax⋅K⋅C1+K⋅C, R2 > 0.99, Umax = 41.80 mV). Cost-effective fabrication and exceptional performance underscore its potential for practical deployment in industrial, residential, and environmental safety monitoring.
Flow field design and experimental investigation of electrochemical trepanning of diffuser with a special structure
The diffuser is a key part of the aircraft engine, and electrochemical machining (ECM) is one of the main methods to process it. In the ECM of a diffuser, the suitability of the flow field determines whether the ECM can be successful. A suitable flow field can not only improve the stability of the machining, but also influence its machining efficiency and surface quality. A diffuser with a special structure is processed by the method of electrochemical trepanning in this paper. A back pressure is added to the machining zone, which is different from the outlet-open flow mode always used in traditional machining method, and the outlet-cornered gap is optimized. Simulation results show that the uniformity of the flow field is optimal when the outlet-cornered gap ζ is 0.35 mm. Furthermore, the experimental investigations are carried out, and the results show that when the feed rate of the cathode is increased from 0.5 to 0.7 mm/min, the blade accuracy is enhanced.
Nootkatone Supplementation Ameliorates Carbon Tetrachloride-Induced Acute Liver Injury via the Inhibition of Oxidative Stress, NF-κB Pathways, and the Activation of Nrf2/HO-1 Pathway
Acute liver injury is a type of liver diseases, and it has raised concerns worldwide due to the lack of effective therapies. The aim of this study is to investigate the protective effects of nootkatone (NOOT) on carbon tetrachloride (CCl4)-caused acute liver injury in mice. Mice were randomly divided into control, CCl4 model, NOOT, and NOOT (5, 10, and 20 mg/kg/day) plus CCl4 groups, respectively. Mice in the CCl4 plus NOOT groups were orally administrated with NOOT at 5, 10, and 20 mg/kg/days for seven days prior to 0.3% CCl4 injection at 10 mL/kg body weight, respectively. Our results showed that NOOT supplementation significantly ameliorated CCl4-induced increases of serum AST and ALT levels, hepatocyte necrosis, inflammatory response, oxidative stress, and caspases-9 and -3 activities in the livers of mice. Moreover, NOOT supplementation significantly upregulated the expression of Nrf2 and HO-1 mRNAs but downregulated the expression of NF-κB mRNAs and the levels of IL-1β, IL-6, and TNF-α proteins in the liver tissues, compared to those in the CCl4 model group. In conclusion, for the first time, our results reveal that NOOT could offer protective effects against CCl4-caused oxidative stress and inflammatory response via the opposite regulation of Nrf2/HO-1 pathway and NF-κB pathway.
Association of circulating metabolic biomarkers with risk of lung cancer: a population-based prospective cohort study
Background There is emerging evidence that metabolites might be associated with risk of lung cancer, but their relationships have not been fully characterized. We aimed to investigate the association between circulating metabolic biomarkers and lung cancer risk and the potential underlying pathways. Methods Nuclear magnetic resonance metabolomic profiling was conducted on baseline plasma samples from 91,472 UK Biobank participants without cancer and pregnancy. Multivariate Cox regression models were employed to assess the hazard ratios (HRs) of 164 metabolic biomarkers (including metabolites and lipoprotein subfractions) and 9 metabolic biomarker principal components (PCs) for lung cancer, after adjusting for covariates and false discovery rate (FDR). Pathway analysis was conducted to investigate the potential metabolic pathways. Results During a median follow-up of 11.0 years, 702 participants developed lung cancer. A total of 109 metabolic biomarkers (30 metabolites and 79 lipoprotein subfractions) were associated with the risk of lung cancer. Glycoprotein acetyls demonstrated a positive association with lung cancer risk [HR = 1.13 (95%CI: 1.04, 1.22)]. Negative associations with lung cancer were found for albumin [0.78 (95%CI: 0.72, 0.83)], acetate [0.91 (95%CI: 0.85, 0.97)], valine [0.90 (95%CI: 0.83, 0.98)], alanine [0.88 (95%CI: 0.82, 0.95)], glucose [0.91 (95%CI: 0.85, 0.99)], citrate [0.91 (95%CI: 0.85, 0.99)], omega-3 fatty acids [0.83 (95%CI: 0.77, 0.90)], linoleic acid [0.83 (95%CI: 0.77, 0.89)], etc. Nine PCs represented over 90% of the total variances, and among those with statistically significant estimates, PC1 [0.85 (95%CI: 0.80, 0.92)], PC2 [0.88 (95%CI: 0.82, 0.95)], and PC9 [0.87 (95%CI: 0.80, 0.93)] were negatively associated with lung cancer risk, whereas PC7 [1.08 (95%CI: 1.00, 1.16)] and PC8 [1.16 (95%CI: 1.08, 1.26)] showed positive associations with lung cancer risk. The pathway analysis showed that the “linoleic acid metabolism” was statistically significant after the FDR adjustment ( p value 0.0496). Conclusions Glycoprotein acetyls had a positive association with lung cancer risk while other metabolites and lipoprotein subfractions showed negative associations. Certain metabolites and lipoprotein subfractions might be independent risk factors for lung cancer. Our findings shed new light on the etiology of lung cancer and might aid the selection of high-risk individuals for lung cancer screening.
Comparative Study of Preparation, Evaluation, and Pharmacokinetics in Beagle Dogs of Curcumin β-Cyclodextrin Inclusion Complex, Curcumin Solid Dispersion, and Curcumin Phospholipid Complex
Curcumin is a natural acidic polyphenol extracted from turmeric with a wide range of biological and pharmacological effects. However, the application of curcumin for animal production and human life is limited by a low oral bioavailability. In this study, natural curcumin was prepared for the curcumin β-cyclodextrin inclusion complex (CUR-β-CD), curcumin solid dispersion (CUR-PEG-6000), and curcumin phospholipid complex (CUR-HSPC) using co-precipitation, melting, and solvent methods, respectively. Curcumin complex formations were monitored using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) techniques via the shifts in the microscopic structure, molecular structure, and crystalline state. Subsequently, twenty-four female beagle dogs were randomly divided into four groups to receive unmodified curcumin and three other curcumin preparations. The validated UPLC–MS assay was successfully applied to pharmacokinetic and bioavailability studies of curcumin in beagle dog plasma, which were collected after dosing at 0 min (predose), 5 min, 15 min, 30 min, 40 min, 50 min, 1.5 h, 3 h, 4.5 h, 5.5 h, 6 h, 6.5 h, 9 h, and 24 h. The relative bioavailabilities of CUR-β-CD, CUR-PEG-6000, and CUR-HSPC were 231.94%, 272.37%, and 196.42%, respectively. This confirmed that CUR-β-CD, CUR-HSPC, and especially CUR-PEG-6000 could effectively improve the bioavailability of curcumin.
Tumor-associated macrophages in tumor progression and the role of traditional Chinese medicine in regulating TAMs to enhance antitumor effects
PurposeTo emphasize the importance of tumor-associated macrophages (TAMs) in tumor immunity and to describe the ways in which extracts from Traditional Chinese Medicine (TCM) achieve tumor therapy by modulating macrophages.SignificanceBy summarizing these available data, this review focused on TAMs and TCM and can build the foundation for future research on antitumor therapeutics.MethodsIn this review, we summarized the key functions of TAMs in cancer development and overviewed literature on TCM targeting TAMs together with other immune cells aiming to enhance antitumor immunity.ConclusionsWith an indispensable role in antitumor immunity, TAMs contribute to tumor progression, migration, invasion, angiogenesis, lymphangiogenesis, and immunosuppressive microenvironment. In recent years, TCM has gradually gained attention as a potential antitumor adjunctive therapy in preclinical and clinical trials. TCM is also a regulator of cytokine secretion and cell surface molecule expression in balancing the tumor microenvironment (TME), especially macrophage activation and polarization. Therefore, it is believed that TCM could serve as modifiers with immunomodulatory capability.