Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
62 result(s) for "Lin, Na-Sheng"
Sort by:
Antiviral Roles of Abscisic Acid in Plants
Abscisic acid (ABA) is a key hormone involved in tuning responses to several abiotic stresses and also has remarkable impacts on plant defense against various pathogens. The roles of ABA in plant defense against bacteria and fungi are multifaceted, inducing or reducing defense responses depending on its time of action. However, ABA induces different resistance mechanisms to viruses regardless of the induction time. Recent studies have linked ABA to the antiviral silencing pathway, which interferes with virus accumulation, and the micro RNA (miRNA) pathway through which ABA affects the maturation and stability of miRNAs. ABA also induces callose deposition at plasmodesmata, a mechanism that limits viral cell-to-cell movement. Bamboo mosaic virus (BaMV) is a member of the potexvirus group and is one of the most studied viruses in terms of the effects of ABA on its accumulation and resistance. In this review, we summarize how ABA interferes with the accumulation and movement of BaMV and other viruses. We also highlight aspects of ABA that may have an effect on other types of resistance and that require further investigation.
Effects of Abscisic Acid and Salicylic Acid on Gene Expression in the Antiviral RNA Silencing Pathway in Arabidopsis
The RNA silencing pathways modulate responses to certain stresses, and can be partially tuned by several hormones such as salicylic acid (SA) and abscisic acid (ABA). Although SA and ABA are often antagonistic and often modulate different stress responses, they have similar effects on virus resistance, which are partially achieved through the antiviral RNA silencing pathway. Whether they play similar roles in regulating the RNA silencing pathway is unclear. By employing coexpression and promoter analyses, we found that some ABA- and SA-related transcription factors (TFs) are coexpressed with several AGO, DCL, and RDR genes, and have multiple binding sites for the identified TFs in the queried promoters. ABA and SA are antagonistic with respect to the expression of AGO1 and RDRs because ABA was able to induce these genes only in the SA mutant. Nevertheless, both hormones showed similarities in the regulation of other genes, for example, the induction of AGO2 by ABA was SA-dependent, indicating that ABA acts upstream of SA in this regulation. We inferred that the similar effects of ABA and SA on some genes resulted in the redundancy of their roles in resistance to bamboo mosaic virus, but that the two hormones are antagonistic with respect to other genes unrelated to their biosynthesis pathways.
Correlation between mtDNA complexity and mtDNA replication mode in developing cotyledon mitochondria during mung bean seed germination
The currently accepted model of recombination-dependent replication (RDR) in plant mitochondrial DNA (mtDNA) does not clearly explain how RDR progresses and how highly complex mtDNA develops. This study aimed to investigate the correlation between RDR and mtDNA complexity during mitochondrial development in mung bean (Vigna radiata) seed, and the initiation and processing of RDR in plant mitochondria. Flow cytometry, pulsed-field gel electrophoresis, electron microscopy, real-time PCR and biochemical studies were used in this study. The highly dynamic changes in mtDNA complexity correspond to mtDNA RDR activity throughout mitochondrial development. With in vitro freeze–thaw treatment or prolonged in vivo cold incubation, the mtDNA rosette core disappeared and the rosette structure converted to a much longer linear DNA structure. D-loops, Holliday junctions and putative RDR forks often appeared near the rosette cores. We hypothesize that the rosette core may consist of condensed mtDNA and a replication starting sequence, and play an initial and central role in RDR. The satellite cores in the rosette structure may represent the re-initiation sites of mtDNA RDR in the same parental molecule, thereby forming highly complex and giant mitochondrial molecules, representing the RDR intermediates, in vivo.
Importin α2 participates in RNA interference against bamboo mosaic virus accumulation in Nicotiana benthamiana via NbAGO10a‐mediated small RNA clearance
Karyopherins, the nucleocytoplasmic transporters, participate in multiple RNA silencing stages by transporting associated proteins into the nucleus. Importin α is a member of karyopherins and has been reported to facilitate virus infection via nuclear import of viral proteins. Unlike other RNA viruses, silencing of importin α2 (α2i) by virus‐induced gene silencing (VIGS) boosted the titre of bamboo mosaic virus (BaMV) in protoplasts, and inoculated and systemic leaves of Nicotiana benthamiana. The enhanced BaMV accumulation in importin α2i plants was linked to reduced levels of RDR6‐dependent secondary virus‐derived small‐interfering RNAs (vsiRNAs). Small RNA‐seq revealed importin α2 silencing did not affect the abundance of siRNAs derived from host mRNAs but significantly reduced the 21 and 22 nucleotide vsiRNAs in BaMV‐infected plants. Deletion of BaMV TGBp1, an RNA silencing suppressor, compromised importin α2i‐mediated BaMV enhancement. Moreover, silencing of importin α2 upregulated NbAGO10a, a proviral protein recruited by TGBp1 for BaMV vsiRNAs clearance, but hindered the nuclear import of NbAGO10a. Taken together, these results indicate that importin α2 acts as a negative regulator of BaMV invasion by controlling the expression and nucleocytoplasmic shuttling of NbAGO10a, which removes vsiRNAs via the TGBp1‐NbAGO10a‐SDN1 pathway. Our findings reveal the hidden antiviral mechanism of importin α2 in countering BaMV infection in N. benthamiana. Silencing of importin α's enhances BaMV accumulation but reduces its virus‐derived small‐interfering RNAs (vsiRNAs) via NbAGO10a and SDN1‐mediated small RNA clearance in Nicotiana benthamiana.
miRExpress: Analyzing high-throughput sequencing data for profiling microRNA expression
Background MicroRNAs (miRNAs), small non-coding RNAs of 19 to 25 nt, play important roles in gene regulation in both animals and plants. In the last few years, the oligonucleotide microarray is one high-throughput and robust method for detecting miRNA expression. However, the approach is restricted to detecting the expression of known miRNAs. Second-generation sequencing is an inexpensive and high-throughput sequencing method. This new method is a promising tool with high sensitivity and specificity and can be used to measure the abundance of small-RNA sequences in a sample. Hence, the expression profiling of miRNAs can involve use of sequencing rather than an oligonucleotide array. Additionally, this method can be adopted to discover novel miRNAs. Results This work presents a systematic approach, miRExpress, for extracting miRNA expression profiles from sequencing reads obtained by second-generation sequencing technology. A stand-alone software package is implemented for generating miRNA expression profiles from high-throughput sequencing of RNA without the need for sequenced genomes. The software is also a database-supported, efficient and flexible tool for investigating miRNA regulation. Moreover, we demonstrate the utility of miRExpress in extracting miRNA expression profiles from two Illumina data sets constructed for the human and a plant species. Conclusion We develop miRExpress, which is a database-supported, efficient and flexible tool for detecting miRNA expression profile. The analysis of two Illumina data sets constructed from human and plant demonstrate the effectiveness of miRExpress to obtain miRNA expression profiles and show the usability in finding novel miRNAs.
NbHDR, A Host Protein Involved in the MEP Pathway, Interacts With Bamboo Mosaic Virus Replicase and Enhances Viral Accumulation
Plant viruses, as obligate parasites, depend on host cellular machinery for various processes essential to their life cycle, making the investigation of these interactions fundamentally important. Bamboo mosaic virus (BaMV), a positive‐strand (+) RNA virus, serves as a model to explore host–virus interactions during replication. In this study, Nicotiana benthamiana 1‐hydroxy‐2‐methyl‐butenyl 4‐diphosphate reductase (NbHDR), a key enzyme in the methylerythritol 4‐phosphate (MEP) pathway, was identified as an interactor with BaMV replicase through immunoprecipitation, pull‐down and yeast two‐hybrid assays. Knockdown of NbHDR significantly reduced the accumulation of BaMV RNA and coat protein but did not affect infection with the close relative potato virus X, indicating its specific involvement in BaMV replication. Overexpression of NbHDR in N. benthamiana or the addition of NbHDR in in vitro RdRp reactions demonstrated that NbHDR enhances BaMV replication by promoting (+) RNA synthesis. To further explore whether the role of NbHDR in BaMV replication is linked to gibberellic acid (GA) synthesis through the MEP pathway, individual knockdowns of NbHDR and ent‐kaurene synthase (KS), a key enzyme in GA biosynthesis, were performed. Silencing KS sireduced BaMV accumulation, which was rescued by exogenous GA, but GA supplementation was insufficient to restore BaMV levels after NbHDR silencing. These findings suggest that NbHDR associates with the BaMV replication complex to enhance viral replication efficiency through a mechanism independent of GA synthesis from the MEP pathway, providing new insights into host–virus interactions. Chloroplast protein NbHDR directly interacts with BaMV replicase to enhance viral replication by promoting (+) RNA synthesis, independently of its role in gibberellic acid biosynthesis.
Disrupting the Homeostasis of High Mobility Group Protein Promotes the Systemic Movement of Bamboo mosaic virus
Viruses hijack various organelles and machineries for their replication and movement. Ever more lines of evidence indicate that specific nuclear factors are involved in systemic trafficking of several viruses. However, how such factors regulate viral systemic movement remains unclear. Here, we identify a novel role for Nicotiana benthamiana high mobility group nucleoprotein (NbHMG1/2a) in virus movement. Although infection of N. benthamiana with Bamboo mosaic virus (BaMV) decreased NbHMG1/2a expression levels, nuclear-localized NbHMG1/2a protein was shuttled out of the nucleus into cytoplasm upon BaMV infection. NbHMG1/2a knockdown or even overexpression did not affect BaMV accumulation in inoculated leaves, but it did enhance systemic movement of the virus. Interestingly, the positive regulator Rap-GTPase activation protein 1 was highly upregulated upon infection with BaMV, whereas the negative regulator thioredoxin h protein was greatly reduced, no matter if NbHMG1a/2a was silenced or overexpressed. Our findings indicate that NbHMG1/2a may have a role in plant defense responses. Once its homeostasis is disrupted, expression of relevant host factors may be perturbed that, in turn, facilitates BaMV systemic movement.
Genome‐wide analysis of small RNAs from Odontoglossum ringspot virus and Cymbidium mosaic virus synergistically infecting Phalaenopsis
Summary Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) are the two most prevalent viruses infecting orchids and causing economic losses worldwide. Mixed infection of CymMV and ORSV could induce intensified symptoms as early at 10 days post‐inoculation in inoculated Phalaenopsis amabilis, where CymMV pathogenesis was unilaterally enhanced by ORSV. To reveal the antiviral RNA silencing activity in orchids, we characterized the viral small‐interfering RNAs (vsiRNAs) from CymMV and ORSV singly or synergistically infecting P. amabilis. We also temporally classified the inoculated leaf‐tip tissues and noninoculated adjacent tissues as late and early stages of infection, respectively. Regardless of early or late stage with single or double infection, CymMV and ORSV vsiRNAs were predominant in 21‐ and 22‐nt sizes, with excess positive polarity and under‐represented 5ʹ‐guanine. While CymMV vsiRNAs mainly derived from RNA‐dependent RNA polymerase‐coding regions, ORSV vsiRNAs encompassed the coat protein gene and 3ʹ‐untranslated region, with a specific hotspot residing in the 3ʹ‐terminal pseudoknot. With double infection, CymMV vsiRNAs increased more than 5‐fold in number with increasing virus titres. Most vsiRNA features remained unchanged with double inoculation, but additional ORSV vsiRNA hotspot peaks were prominent. The potential vsiRNA‐mediated regulation of the novel targets in double‐infected tissues thereby provides a different view of CymMV and ORSV synergism. Hence, temporally profiled vsiRNAs from taxonomically distinct CymMV and ORSV illustrate active antiviral RNA silencing in their natural host, Phalaenopsis, during both early and late stages of infection. Our findings provide insights into offence–defence interactions among CymMV, ORSV and orchids.
NbNAC42 and NbZFP3 Transcription Factors Regulate the Virus Inducible NbAGO5 Promoter in Nicotiana benthamiana
Plant argonautes (AGOs) play important roles in the defense responses against viruses. The expression of Nicotiana benthamiana AGO5 gene ( NbAGO5 ) is highly induced by Bamboo mosaic virus (BaMV) infection; however, the underlying mechanisms remain elusive. In this study, we have analyzed the potential promoter activities of NbAGO5 and its interactions with viral proteins by using a 2,000 bp fragment, designated as PN1, upstream to the translation initiation of NbAGO5. PN1 and seven serial 5′-deletion mutants (PN2–PN8) were fused with a β-glucuronidase (GUS) reporter and introduced into the N. benthamiana genome by Agrobacterium -mediated transformation for further characterization. It was found that PN4-GUS transgenic plants were able to drive strong GUS expression in the whole plant. In the virus infection tests, the GUS activity was strongly induced in PN4-GUS transgenic plants after being challenged with potexviruses. Infiltration of the transgenic plants individually with BaMV coat protein (CP) or triple gene block protein 1 (TGBp1) revealed that only TGBp1 was crucial for inducing the NbAGO5 promoter. To identify the factors responsible for controlling the activity of the NbAGO5 promoter, we employed yeast one-hybrid screening on a transcription factor cDNA library. The result showed that NbNAC42 and NbZFP3 could directly bind the 704 bp promoter regions of NbAGO5 . By using overexpressing and virus-induced gene silencing techniques, we found that NbNAC42 and NbZFP3 regulated and downregulated, respectively, the expression of the NbAGO5 gene. Upon virus infection, NbNAC42 played an important role in regulating the expression of NbAGO5. Together, these results provide new insights into the modulation of the defense mechanism of N. benthamiana against viruses. This virus inducible promoter could be an ideal candidate to drive the target gene expression that could improve the anti-virus abilities of crops in the future.
Identification of Crucial Amino Acids in Begomovirus C4 Proteins Involved in the Modulation of the Severity of Leaf Curling Symptoms
Begomoviruses frequently inflict upward or downward leaf curling symptoms on infected plants, leading to severe economic damages. Knowledge of the underlying mechanism controlling the leaf curling severity may facilitate the development of alternative disease management strategies. In this study, through genomic recombination between Ageratum yellow vein virus Nan-Tou strain (AYVV-NT) and Tomato leaf curl virus Tai-Chung Strain (TLCV-TC), which caused upward and downward leaf curling on Nicotiana benthamiana, respectively, it was found that the coding region of C4 protein might be involved in the determination of leaf curling directions. Sequence comparison and mutational analysis revealed that the cysteine and glycine at position 8 and 14 of AYVV-TC C4 protein, respectively, are involved in the modulation of leaf curling symptoms. Cross-protection assays further demonstrated that N. benthamiana inoculated with AYVV-carrying mutations of the aforementioned amino acids exhibited attenuated leaf curling symptoms under the challenge of wild-type AYVV-NT. Together, these findings revealed a new function of begomovirus C4 proteins involved in the modulation of leaf curling severity during symptom formation and suggested potential applications for managing viral diseases through manipulating the symptoms.