Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
86 result(s) for "Lin, Shu-Hung"
Sort by:
Completing bacterial genome assemblies: strategy and performance comparisons
Determining the genomic sequences of microorganisms is the basis and prerequisite for understanding their biology and functional characterization. While the advent of low-cost, extremely high-throughput second-generation sequencing technologies and the parallel development of assembly algorithms have generated rapid and cost-effective genome assemblies, such assemblies are often unfinished, fragmented draft genomes as a result of short read lengths and long repeats present in multiple copies. Third-generation, PacBio sequencing technologies circumvented this problem by greatly increasing read length. Hybrid approaches including ALLPATHS-LG, PacBio corrected reads pipeline, SPAdes and SSPACE-LongRead and non-hybrid approaches—hierarchical genome-assembly process (HGAP) and PacBio corrected reads pipeline via self-correction—have therefore been proposed to utilize the PacBio long reads that can span many thousands of bases to facilitate the assembly of complete microbial genomes. However, standardized procedures that aim at evaluating and comparing these approaches are currently insufficient. To address the issue, we herein provide a comprehensive comparison by collecting datasets for the comparative assessment on the above-mentioned five assemblers. In addition to offering explicit and beneficial recommendations to practitioners, this study aims to aid in the design of a paradigm positioned to complete bacterial genome assembly.
Preparation and Characteristics of Polyethylene Oxide/Curdlan Nanofiber Films by Electrospinning for Biomedical Applications
In this study, polyethylene oxide (PEO) and curdlan solutions were used to prepare PEO/curdlan nanofiber films by electrospinning using deionized water as the solvent. In the electrospinning process, PEO was used as the base material, and its concentration was fixed at 6.0 wt.%. Moreover, the concentration of curdlan gum varied from 1.0 to 5.0 wt.%. For the electrospinning conditions, various operating voltages (12–24 kV), working distances (12–20 cm) and feeding rates of polymer solution (5–50 μL/min) were also modified. Based on the experimental results, the optimum concentration for the curdlan gum was 2.0 wt.%. Additionally, the most suitable operating voltage, working distance and feeding rate for the electrospinning process were 19 kV, 20 cm and 9 μL/min, respectively, which can help to prepare relatively thinner PEO/curdlan nanofibers with higher mesh porosity and without the formation of beaded nanofibers. Finally, the PEO/curdlan nanofiber instant films containing 5.0 wt.% quercetin inclusion complex were used to perform wetting and disintegration processes. It was found that the instant film can be dissolved significantly on the low-moisture wet wipe. On the other hand, when the instant film touched water, it can be disintegrated very quickly within 5 s, and the quercetin inclusion complex was dissolved in water efficiently. Furthermore, when the instant film encountered the water vapor at 50 °C, it almost completely disintegrated after immersion for 30 min. The results indicate that the electrospun PEO/curdlan nanofiber film is highly feasible for biomedical applications consisting of instant masks and quick-release wound dressings, even in the water vapor environment.
Artificial Intelligence in Smart Health: Investigation of Theory and Practice
The World Health Organization defines Smart Healthcare as \"Information and Communication Technology applications in the medical and health fields, including medical care, disease management, public health monitoring, education, and research.\" In addition, many scholars believe that \"Smart Healthcare\" refers also to the integration of medical informatics, public health, and business applications mainly through the Internet and related artificial intelligence and data mining technologies in order to provide more accurate personal healthcare services and health information. The concept of deep learning has gained ground rapidly in recent years. While deep learning is usually applied to the studies of image/object recognition such as board game notations, paintings, people/things/objects in pictures, and so on, it is also often applied to the extraction of features. However, researchers have rarely used deep learning methods to predict outcomes in the medical and healthcare fields, preferring instead to make thes
人工智慧技術於智慧醫療之理論探討與實務應用
世界衛生組織(World Health Organization)對於「智慧醫療」(smart healthcare)的定義為:「資通訊科技(information and communication technology)在醫療及健康領域的應用,包括醫療照護、疾病管理、公共衛生監測、教育和研究」。另外,許多學者也認為「智慧醫療」是指醫學資訊(medical informatics)、公共衛生、商業應用的整合,主要是透過網際網路及相關的人工智慧與資料探勘技術,提供更精準的個人化健康服務與健康資訊的應用。近幾年來,深度學習(deep learning)發展十分迅速且熱門,尤其是在2016年AlphaGo擊敗南韓棋王李世後,深度學習變得更廣為人知。而深度學習最常應用於圖像辨識與物體辨識,像棋譜、畫作或者是圖片中的人事物等之類的辨識,而另一個常用的範疇則是用來進行資料的特徵萃取。在過去的研究中,智慧醫療的研究與應用很少使用機器學習或是深度學習的方式進行分析,大多是使用傳統的統計、迴歸分析的運算進行預測。所以本文將從機器學習與深度學習方法來進行智慧醫療的整合運用。
TEM1/endosialin/CD248 promotes pathologic scarring and TGF-β activity through its receptor stability in dermal fibroblasts
Background Pathologic scars, including keloids and hypertrophic scars, represent a common form of exaggerated cutaneous scarring that is difficult to prevent or treat effectively. Additionally, the pathobiology of pathologic scars remains poorly understood. We aim at investigating the impact of TEM1 (also known as endosialin or CD248), which is a glycosylated type I transmembrane protein, on development of pathologic scars. Methods To investigate the expression of TEM1, we utilized immunofluorescence staining, Western blotting, and single-cell RNA-sequencing (scRNA-seq) techniques. We conducted in vitro cell culture experiments and an in vivo stretch-induced scar mouse model to study the involvement of TEM1 in TGF-β-mediated responses in pathologic scars. Results The levels of the protein TEM1 are elevated in both hypertrophic scars and keloids in comparison to normal skin. A re-analysis of scRNA-seq datasets reveals that a major profibrotic subpopulation of keloid and hypertrophic scar fibroblasts greatly expresses TEM1, with expression increasing during fibroblast activation. TEM1 promotes activation, proliferation, and ECM production in human dermal fibroblasts by enhancing TGF-β1 signaling through binding with and stabilizing TGF-β receptors. Global deletion of Tem1 markedly reduces the amount of ECM synthesis and inflammation in a scar in a mouse model of stretch-induced pathologic scarring. The intralesional administration of ontuxizumab, a humanized IgG monoclonal antibody targeting TEM1, significantly decreased both the size and collagen density of keloids. Conclusions Our data indicate that TEM1 plays a role in pathologic scarring, with its synergistic effect on the TGF-β signaling contributing to dermal fibroblast activation. Targeting TEM1 may represent a novel therapeutic approach in reducing the morbidity of pathologic scars.
Role of Iron-Containing Alcohol Dehydrogenases in Acinetobacter baumannii ATCC 19606 Stress Resistance and Virulence
Most bacteria possess alcohol dehydrogenase (ADH) genes (Adh genes) to mitigate alcohol toxicity, but these genes have functions beyond alcohol degradation. Previous research has shown that ADH can modulate quorum sensing in Acinetobacter baumannii, a rising opportunistic pathogen. However, the number and nature of Adh genes in A. baumannii have not yet been fully characterized. We identified seven alcohol dehydrogenases (NAD+-ADHs) from A. baumannii ATCC 19606, and examined the roles of three iron-containing ADHs, ADH3, ADH4, and ADH6. Marker-less mutation was used to generate Adh3, Adh4, and Adh6 single, double, and triple mutants. Disrupted Adh4 mutants failed to grow in ethanol-, 1-butanol-, or 1-propanol-containing mediums, and recombinant ADH4 exhibited strongest activity against ethanol. Stress resistance assays with inorganic and organic hydroperoxides showed that Adh3 and Adh6 were key to oxidative stress resistance. Virulence assays performed on the Galleria mellonella model organism revealed that Adh4 mutants had comparable virulence to wild-type, while Adh3 and Adh6 mutants had reduced virulence. The results suggest that ADH4 is primarily involved in alcohol metabolism, while ADH3 and ADH6 are key to stress resistance and virulence. Further investigation into the roles of other ADHs in A. baumannii is warranted.
Emergence and Persistent Dominance of SARS-CoV-2 Omicron BA.2.3.7 Variant, Taiwan
Since April 2022, waves of SARS-CoV-2 Omicron variant cases have surfaced in Taiwan and spread throughout the island. Using high-throughput sequencing of the SARS-CoV-2 genome, we analyzed 2,405 PCR-positive swab samples from 2,339 persons and identified the Omicron BA.2.3.7 variant as a major lineage within recent community outbreaks in Taiwan.
Seismic Velocity Structure of Upper Mantle Beneath the Oldest Pacific Seafloor: Insights From Finite‐Frequency Tomography
The oldest oceanic basin (160–180 Ma) in the western Pacific is the birthplace of the Pacific Plate and is thus essential for understanding the formation and evolution of the oceanic plate. However, the upper mantle structure beneath the region has not been thoroughly investigated because of the remoteness and difficulties of long‐term in situ seismic measurements at the ocean bottom. From 2018 to 2019, the Oldest‐1 experiment on the oldest seafloor was conducted as part of the international Pacific Array initiative. We present the first three‐dimensional P ‐wave velocity structure down to a depth of 350 km based on the relative travel time residuals of teleseismic earthquakes recorded by 11 broadband ocean‐bottom seismometers operated during the Oldest‐1 experiment. Our result shows a fast P ‐wave velocity anomaly ( V P perturbation of 2%–4% faster than average) at a depth of 95–185 km beneath the northeast of the study area. This structure is interpreted as evidence of dry, viscous, and rigid materials at depths below the lithosphere. Two slow anomalies ( V P perturbation of 2%–4% slower than average) are seen beneath the southwestern and eastern (the oldest seafloor >170 Ma) parts of the array site. The low‐velocity zones are found at depths of 95–305 km. The observed velocity structures can be indicative of plume activities that affected the upper mantle as the Pacific Plate migrated over hotspots from the southeast. Alternatively, the observed velocity features may provide seismic evidence for small‐scale sublithospheric convection. One‐year ocean‐bottom geophysical investigation on the oldest Pacific provides seismic mantle structure of the region Detailed 3‐D mantle structure implies complex evolution process of Pacific Plate Our model implies thermochemical modification of the upper mantle by plume interaction or small‐scale convection
PSO-Based Target Localization and Tracking in Wireless Sensor Networks
Research of target localization and tracking is always a remarkable problem in the application of wireless sensor networks (WSNs) technology. There are many kinds of research and applications of target localization and tracking, such as Angle of Arrival (AOA), Time of Arrival (TOA), and Time Difference of Arrival (TDOA). The target localization accuracy for TOA, TDOA, and AOA is better than RSS. However, the required devices in the TOA, TDOA, and AOA are more expensive than RSS. In addition, the computational complexity of TOA, TDOA, and AOA is also more complicated than RSS. This paper uses a particle swarm optimization (PSO) algorithm with the received signal strength index (RSSI) channel model for indoor target localization and tracking. The performance of eight different method combinations of random or regular points, fixed or adaptive weights, and the region segmentation method (RSM) proposed in this paper for target localization and tracking is investigated for the number of particles in the PSO algorithm with 12, 24, 52, 72, and 100. The simulation results show that the proposed RSM method can reduce the number of particles used in the PSO algorithm and improve the speed of positioning and tracking without affecting the accuracy of target localization and tracking. The total average localization time for target localization and tracking with the RSM method can be reduced by 48.95% and 34.14%, respectively, and the average accuracy of target tracking reaches up to 93.09%.
Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons
Human ALS/FTD patient iPSC-derived neurons are used to uncover mechanisms by which C9ORF72 mutations cause neurodegeneration. An intronic GGGGCC repeat expansion in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the pathogenic mechanism of this repeat remains unclear. Using human induced motor neurons (iMNs), we found that repeat-expanded C9ORF72 was haploinsufficient in ALS. We found that C9ORF72 interacted with endosomes and was required for normal vesicle trafficking and lysosomal biogenesis in motor neurons. Repeat expansion reduced C9ORF72 expression, triggering neurodegeneration through two mechanisms: accumulation of glutamate receptors, leading to excitotoxicity, and impaired clearance of neurotoxic dipeptide repeat proteins derived from the repeat expansion. Thus, cooperativity between gain- and loss-of-function mechanisms led to neurodegeneration. Restoring C9ORF72 levels or augmenting its function with constitutively active RAB5 or chemical modulators of RAB5 effectors rescued patient neuron survival and ameliorated neurodegenerative processes in both gain- and loss-of-function C9ORF72 mouse models. Thus, modulating vesicle trafficking was able to rescue neurodegeneration caused by the C9ORF72 repeat expansion. Coupled with rare mutations in ALS2, FIG4, CHMP2B, OPTN and SQSTM1 , our results reveal mechanistic convergence on vesicle trafficking in ALS and FTD.