Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
505 result(s) for "Lin, Wei-Zhi"
Sort by:
Electroacupuncture Stimulation Suppresses Postoperative Inflammatory Response and Hippocampal Neuronal Injury
Postoperative cognitive dysfunction (POCD) is consequence of anesthesia and surgery that primarily affects older people. The prevention and treatment of POCD has drawn an increasing attention in recent decades. Here, we established the animal model mimicked POCD after femoral fracture surgery, and analyze the effect of acupuncture stimulation on postoperative cognitive function after femoral fracture surgery. Compared with the mock group, the cognitive function performance was significantly decreased both in the anaesthesia group and the surgery group, between which the symptoms were more severe in the surgery group. The peripheral inflammation response and the neuron impairment and inflammation response in the hippocampus were observed in the surgery group, but only peripheral inflammation response was detected in the anaesthesia group. These findings indicated the POCD was the synergistic outcome of anaesthesia and surgical stimulation but with different pathogenic mechanism. The surgery with mental tri-needles (surgery+MTN) group outperformed the surgery group in terms of cognitive function performance. The peripheral inflammation response and the neuron impairment and inflammation response in the hippocampus was significantly reduced by the electroacupuncture stimulation. Our findings indicated the protection of electroacupuncture form POCD after femoral fracture surgery is related to the inhibition of inflammation response and neuron impairment.
Efficient biodegradation of di-(2-ethylhexyl) phthalate by a novel strain Nocardia asteroides LMB-7 isolated from electronic waste soil
The di-2-ethylhexyl phthalate (DEHP) degrading strain LMB-7 was isolated from electronic waste soil. According to its biophysical/biochemical characteristics and 16S rRNA gene analysis, the strain was identified as Nocardia asteroides . Optimal pH and temperature for DEHP degradation were 8.0 and 30 °C, respectively, and DEHP removal reached 97.11% after cultivation for 24 h at an initial concentration of 400 mg/L. As degradation intermediates, di-butyl phthalates, mono-2-ethylhexyl phthalate and 2-ethylhexanol could be identified, and it could be confirmed that DEHP was completely degraded by strain LMB-7. To our knowledge, this is a new report of DEHP degradation by a strain of Nocardia asteroides , at rates higher than those reported to date . This finding provides a new way for DEHP elimination from environment.
Adjuvant therapy provides no additional recurrence-free benefit for esophageal squamous cell carcinoma patients after neoadjuvant chemoimmunotherapy and surgery: a multi-center propensity score match study
The need for adjuvant therapy (AT) following neoadjuvant chemoimmunotherapy (nICT) and surgery in esophageal squamous cell cancer (ESCC) remains uncertain. This study aims to investigate whether AT offers additional benefits in terms of recurrence-free survival (RFS) for ESCC patients after nICT and surgery. Retrospective analysis was conducted between January 2019 and December 2022 from three centers. Eligible patients were divided into two groups: the AT group and the non-AT group. Survival analyses comparing different modalities of AT (including adjuvant chemotherapy and adjuvant chemoimmunotherapy) with non-AT were performed. The primary endpoint was RFS. Propensity score matching(PSM) was used to mitigate inter-group patient heterogeneity. Kaplan-Meier survival curves and Cox regression analysis were employed for recurrence-free survival analysis. A total of 155 nICT patients were included, with 26 patients experiencing recurrence. According to Cox analysis, receipt of adjuvant therapy emerged as an independent risk factor(HR:2.621, 95%CI:[1.089,6.310], P=0.032), and there was statistically significant difference in the Kaplan-Meier survival curves between non-AT and receipt of AT in matched pairs (p=0.026). Stratified analysis revealed AT bring no survival benefit to patients with pathological complete response(p= 0.149) and residual tumor cell(p=0.062). Subgroup analysis showed no significant difference in recurrence-free survival between non-AT and adjuvant chemoimmunotherapy patients(P=0.108). However, patients receiving adjuvant chemotherapy exhibited poorer recurrence survival compared to non-AT patients (p= 0.016). In terms of recurrence-free survival for ESCC patients after nICT and surgery, the necessity of adjuvant therapy especially the adjuvant chemotherapy, can be mitigated.
Overexpression of OqxAB and MacAB efflux pumps contributes to eravacycline resistance and heteroresistance in clinical isolates of Klebsiella pneumoniae
This study investigated the characteristics and mechanisms of eravacycline resistance and heteroresistance in clinical Klebsiella pneumoniae isolates. A total of 393 clinical K. pneumoniae isolates were collected and subjected to eravacycline and tigecycline MIC determinations using the agar dilution method. Eravacycline heteroresistance was assessed by a population analysis profile (PAP). The expression levels of efflux pumps and their regulators were determined by quantitative reverse-transcription PCR (qRT-PCR). This study identified 67 eravacycline-nonsusceptible isolates; among the extended-spectrum β-lactamase (ESBL)-positive isolates, eravacycline-nonsusceptible isolates were detected more frequently than tigecycline-nonsusceptible isolates (21.7% vs. 9.4%, p = 0.001). The study sample was observed to include 20 K. pneumoniae isolates with eravacycline heteroresistance. Compared to the reference strain, oqxA or oqxB overexpression was observed in nine eravacycline-nonsusceptible isolates (range, 35.64-309.02-fold) and 13 eravacycline-heteroresistant isolates (8.42-296.34-fold). The overexpression of macA or macB was detected in 12 eravacycline-heteroresistant isolates (3.23-28.35-fold). Overexpression of the efflux pump regulator gene ramA was observed in 11 eravacycline-nonsusceptible isolates (3.33-94.05-fold) and 18 eravacycline-heteroresistant isolates (3.89-571.70-fold). The eravacycline MICs were increased by one-fourfold by overexpression of oqxAB or macAB in three eravacycline-sensitive isolates. In conclusion, the overexpression of OqxAB and MacAB efflux pumps and the transcriptional regulator RamA were suggested to be involved in K. pneumoniae eravacycline resistance and heteroresistance.
From GWAS to drug screening: repurposing antipsychotics for glioblastoma
Background Glioblastoma is currently an incurable cancer. Genome-wide association studies have demonstrated that 41 genetic variants are associated with glioblastoma and may provide an option for drug development. Methods We investigated FDA-approved antipsychotics for their potential treatment of glioblastoma based on genome-wide association studies data using a ‘pathway/gene-set analysis’ approach. Results The in-silico screening led to the discovery of 12 candidate drugs. DepMap portal revealed that 42 glioma cell lines show higher sensitivities to 12 candidate drugs than to Temozolomide, the current standard treatment for glioblastoma. Conclusion In particular, cell lines showed significantly higher sensitivities to Norcyclobenzaprine and Protriptyline which were predicted to bind targets to disrupt a certain molecular function such as DNA repair, response to hormones, or DNA-templated transcription, and may lead to an effect on survival-related pathways including cell cycle arrest, response to ER stress, glucose transport, and regulation of autophagy. However, it is recommended that their mechanism of action and efficacy are further determined.
Biofilm Formation in Klebsiella pneumoniae Bacteremia Strains Was Found to be Associated with CC23 and the Presence of wcaG
bacteremia biofilm traits and distribution characteristics have not been clarified. This study aimed to determine the prevalence and characteristics of bacteremia biofilm formation (BF) and to explore the virulence factors associated with BF. A total of 250 bacteremia isolates were collected from patients in Shenzhen and Shanghai, China. Virulence genes in their genomes were detected by PCR. The isolates were subjected to multilocus sequence typing (MLST) and clonal complex (CC) classification based on housekeeping genes. Biofilms were detected by crystal violet staining. Greater BF was observed in isolates from young adults (<40 years old) than in those from seniors (≥65 years old; = 0.002). MLST yielded 65 different sequence types (STs), with the most represented STs being ST11, ST23, and ST65, and the main CCs were CC23 and CC65; CC23 isolates exhibited greater BF than CC65 or ST11 isolates (both < 0.001). BF was more pronounced among +, +, +, +, +, and + isolates than in isolates that were negative for these virulence factors. Multivariate regression analysis revealed only as an independent risk factor for BF (odds ratio 11.426, < 0.001), and BF was decreased when was silenced by antisense RNA. In conclusion, BF in bacteremia isolates was found to be associated with CC23 classification and the presence of the virulence factor gene.
Genome-wide association study reveals ethnicity-specific SNPs associated with ankylosing spondylitis in the Taiwanese population
Background Ankylosing spondylitis (AS) is an autoimmune disease affecting mainly spine and sacroiliac joints and adjacent soft tissues. Genome-wide association studies (GWASs) are used to evaluate genetic associations and to predict genetic risk factors that determine the biological basis of disease susceptibility. We aimed to explore the race-specific SNP susceptibility of AS in Taiwanese individuals and to investigate the association between HLA-B27 and AS susceptibility SNPs in Taiwan. Methods Genotyping data were collected from a medical center participating in the Taiwan Precision Medicine Initiative (TPMI) in the northern district of Taiwan. We designed a case–control study to identify AS susceptibility SNPs through GWAS. We searched the genome browser to find the corresponding susceptibility genes and used the GTEx database to confirm the regulation of gene expression. A polygenic risk score approach was also applied to evaluate the genetic variants in the prediction of developing AS. Results The results showed that the SNPs located on the sixth chromosome were related to higher susceptibility in the AS group. There was no overlap between our results and the susceptibility SNPs found in other races. The 12 tag SNPs located in the MHC region that were found through the linkage disequilibrium method had higher gene expression. Furthermore, Taiwanese people with HLA-B27 positivity had a higher proportion of minor alleles. This might be the reason that the AS prevalence is higher in Taiwan than in other countries. We developed AS polygenic risk score models with six different methods in which those with the top 10% polygenic risk had a fivefold increased risk of developing AS compared to the remaining group with low risk. Conclusion A total of 147 SNPs in the Taiwanese population were found to be statistically significantly associated with AS on the sixth pair of chromosomes and did not overlap with previously published sites in the GWAS Catalog. Whether those genes mapped by AS-associated SNPs are involved in AS and what the pathogenic mechanism of the mapped genes is remain to be further studied.
Hydralazine Associated With Reduced Therapeutic Phlebotomy Frequency in a Nationwide Cohort Study: Real-World Effectiveness for Drug Repurposing
Background: Therapeutic phlebotomy, known as scheduled bloodletting, has been the main method for managing erythrocytosis symptoms and thrombocytosis-associated complications in various blood disorders. One of the major indications for phlebotomy is polycythemia vera (PV). The main goal of current treatment strategies for patients who require phlebotomy is to prevent thrombohemorrhagic complications rather than to prolong survival or lessen the risk of myelofibrotic or leukemic progression. Additional cytoreductive therapy is recommended for high-risk PV, for which the common first-line drug is hydroxyurea. However, recent evidence suggests that phlebotomy may not reduce the risk of thrombosis in patients with PV. Further evidence suggests that patients with PV treated with hydroxyurea who require three or more phlebotomy procedures per year have a higher risk of thrombotic complications. Methods: We hypothesized that a drug-repurposing strategy of utilizing antineoplastic drugs for patients who require phlebotomy would result in greater benefits than would phlebotomy. The antihypertensive hydralazine and the anticonvulsant valproate, which have both been reported to have antineoplastic activity that mimics cytoreductive agents, were selected as candidates for the drug-repositioning strategy in a retrospective cohort study. We measured the hazard ratios (HR) and the frequencies of phlebotomy in patients with prescriptions for hydralazine or valproate or the two drugs in combination by using data from Taiwan’s National Health Insurance Research Database from 2000 to 2015 ( n = 1,936,512). Results: The HRs of undergoing phlebotomy in groups with hydralazine, valproate, and combination hydralazine–valproate prescriptions were reduced to 0.729 ( p = 0.047), 0.887 ( p = 0.196), and 0.621 ( p = 0.022), respectively. The frequency of undergoing phlebotomy decreased from 2.27 to 1.99, 2.01, and 1.86 per person-year ( p = 0.015), respectively. However, no significant differences were observed for the hydralazine group or the hydralazine–valproate combination group. Conclusion: Whether a repurposed drug can serve as a cytoreductive agent for patients who require phlebotomy depends on its risk–benefit balance. We suggest that hydralazine, instead of the hydralazine–valproate combination, is a reasonable alternative for patients who require regular phlebotomy.
Combating Antibiotic Resistance through the Synergistic Effects of Mesoporous Silica-Based Hierarchical Nanocomposites
The enormous influence of bacterial resistance to antibiotics has led researchers toward the development of various advanced antibacterial modalities. In this vein, nanotechnology-based devices have garnered interest owing to their excellent morphological as well as physicochemical features, resulting in augmented therapeutic efficacy. Herein, to overcome the multidrug resistance (MDR) in bacteria, we demonstrate the fabrication of a versatile design based on the copper-doped mesoporous silica nanoparticles (Cu-MSNs). Indeed, the impregnated Cu species in the siliceous frameworks of MSNs establish pH-responsive coordination interactions with the guest molecules, tetracycline (TET), which not only enhance their loading efficiency but also assist in their release in the acidic environment precisely. Subsequently, the ultrasmall silver nanoparticles-stabilized polyethyleneimine (PEI-SNP) layer is coated over Cu-MSNs. The released silver ions from the surface-deposited SNPs are capable of sensitizing the resistant strains through establishing the interactions with the biomembranes, and facilitate the generation of toxic free radicals, damaging the bacterial components. In addition to SNPs, Cu species impregnated in MSN frameworks synergistically act through the production of free radicals by participating in the Fenton-like reaction. Various physical characterization techniques for confirming the synthesis and successful surface modification of functional nanomaterials, as well as different antibacterial tests performed against MDR bacterial strains, are highly commendable. Remarkably, this versatile formulation has shown no significant toxic effects on normal mammalian fibroblast cells accounting for its high biocompatibility. Together, these biocompatible MSN-based trio-hybrids with synergistic efficacy and pH-responsive delivery of antibiotics potentially allow for efficient combat against MDR in bacteria.
Targeted drug delivery of engineered mesenchymal stem/stromal-cell-derived exosomes in cardiovascular disease: recent trends and future perspectives
In recent years, stem cells and their secretomes, notably exosomes, have received considerable attention in biomedical applications. Exosomes are cellular secretomes used for intercellular communication. They perform the function of intercellular messengers by facilitating the transport of proteins, lipids, nucleic acids, and therapeutic substances. Their biocompatibility, minimal immunogenicity, targetability, stability, and engineerable characteristics have additionally led to their application as drug delivery vehicles. The therapeutic efficacy of exosomes can be improved through surface modification employing functional molecules, including aptamers, antibodies, and peptides. Given their potential as targeted delivery vehicles to enhance the efficiency of treatment while minimizing adverse effects, exosomes exhibit considerable promise. Stem cells are considered advantageous sources of exosomes due to their distinctive characteristics, including regenerative and self-renewal capabilities, which make them well-suited for transplantation into injured tissues, hence promoting tissue regeneration. However, there are notable obstacles that need to be addressed, including immune rejection and ethical problems. Exosomes produced from stem cells have been thoroughly studied as a cell-free strategy that avoids many of the difficulties involved with cell-based therapy for tissue regeneration and cancer treatment. This review provides an in-depth summary and analysis of the existing knowledge regarding exosomes, including their engineering and cardiovascular disease (CVD) treatment applications.