Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
304
result(s) for
"Lin, Wenwei"
Sort by:
Tyrosine phosphorylation of protein kinase complex BAK1/BIK1 mediates Arabidopsis innate immunity
2014
The sessile plants have evolved a large number of receptor-like kinases (RLKs) and receptor-like cytoplasmic kinases (RLCKs) to modulate diverse biological processes, including plant innate immunity. Phosphorylation of the RLK/RLCK complex constitutes an essential step to initiate immune signaling. Two Arabidopsis plasma membrane-resident RLKs, flagellin-sensing 2 and brassinosteroid insensitive 1-associated kinase 1 (BAK1), interact with RLCK Botrytis -induced kinase 1 (BIK1) to initiate plant immune responses to bacterial flagellin. BAK1 directly phosphorylates BIK1 and positively regulates plant immunity. Classically defined as a serine/threonine kinase, BIK1 is shown here to possess tyrosine kinase activity with mass spectrometry, immunoblot, and genetic analyses. BIK1 is autophosphorylated at multiple tyrosine (Y) residues in addition to serine/threonine residues. Importantly, BAK1 is able to phosphorylate BIK1 at both tyrosine and serine/threonine residues. BIK1Y150 is likely catalytically important as the mutation blocks both tyrosine and serine/threonine kinase activity, whereas Y243 and Y250 are more specifically involved in tyrosine phosphorylation. The BIK1 tyrosine phosphorylation plays a crucial role in BIK1-mediated plant innate immunity as the transgenic plants carrying BIK1Y150F, Y243F, or Y250F (the mutation of tyrosine to phenylalanine) failed to complement the bik1 mutant deficiency in immunity. Our data indicate that plant RLCK BIK1 is a nonreceptor dual-specificity kinase and both tyrosine and serine/threonine kinase activities are required for its functions in plant immune signaling. Together with the previous finding of BAK1 to be autophosphorylated at tyrosine residues, our results unveiled the tyrosine phosphorylation cascade as a common regulatory mechanism that controls membrane-resident receptor signaling in plants and metazoans.
Journal Article
Research of Online Hand–Eye Calibration Method Based on ChArUco Board
2022
To solve the problem of inflexibility of offline hand–eye calibration in “eye-in-hand” modes, an online hand–eye calibration method based on the ChArUco board is proposed in this paper. Firstly, a hand–eye calibration model based on the ChArUco board is established, by analyzing the mathematical model of hand–eye calibration, and the image features of the ChArUco board. According to the advantages of the ChArUco board, with both the checkerboard and the ArUco marker, an online hand–eye calibration algorithm based on the ChArUco board is designed. Then, the online hand–eye calibration algorithm, based on the ChArUco board, is used to realize the dynamic adjustment of the hand–eye position relationship. Finally, the hand–eye calibration experiment is carried out to verify the accuracy of the hand–eye calibration based on the ChArUco board. The robustness and accuracy of the proposed method are verified by online hand–eye calibration experiments. The experimental results show that the accuracy of the online hand–eye calibration method proposed in this paper is between 0.4 mm and 0.6 mm, which is almost the same as the offline hand–eye calibration accuracy. The method in this paper utilizes the advantages of the ChArUco board to realize online hand–eye calibration, which improves the flexibility and robustness of hand–eye calibration.
Journal Article
Direct Ubiquitination of Pattern Recognition Receptor FLS2 Attenuates Plant Innate Immunity
by
Heese, Antje
,
Avila, Julian
,
Cheng, Cheng
in
Amino Acid Motifs
,
Amino Acid Sequence
,
Antibodies
2011
Innate immune responses are triggered by the activation of pattern-recognition receptors (PRRs). The Arabidopsis PRR FLAGELLIN-SENSING 2 (FLS2) senses bacterial flagellin and initiates immune signaling through association with BAK1. The molecular mechanisms underlying the attenuation of FLS2 activation are largely unknown. We report that flagellin induces recruitment of two closely related U-box E3 ubiquitin ligases, PUB12 and PUB13, to FLS2 receptor complex in Arabidopsis. BAK1 phosphorylates PUB12 and PUB13 and is required for FLS2-PUB12/13 association. PUB12 and PUB13 polyubiquitinate FLS2 and promote flagellin-induced FLS2 degradation, and the pub12 and pub13 mutants displayed elevated immune responses to flagellin treatment. Our study has revealed a unique regulatory circuit of direct ubiquitination and turnover of FLS2 by BAK1-mediated phosphorylation and recruitment of specific E3 ligases for attenuation of immune signaling.
Journal Article
tRNA-mediated codon-biased translation in mycobacterial hypoxic persistence
2016
Microbial pathogens adapt to the stress of infection by regulating transcription, translation and protein modification. We report that changes in gene expression in hypoxia-induced non-replicating persistence in mycobacteria—which models tuberculous granulomas—are partly determined by a mechanism of tRNA reprogramming and codon-biased translation.
Mycobacterium bovis
BCG responded to each stage of hypoxia and aerobic resuscitation by uniquely reprogramming 40 modified ribonucleosides in tRNA, which correlate with selective translation of mRNAs from families of codon-biased persistence genes. For example, early hypoxia increases wobble cmo
5
U in tRNA
Thr(UGU)
, which parallels translation of transcripts enriched in its cognate codon, ACG, including the DosR master regulator of hypoxic bacteriostasis. Codon re-engineering of
dosR
exaggerates hypoxia-induced changes in codon-biased DosR translation, with altered
dosR
expression revealing unanticipated effects on bacterial survival during hypoxia. These results reveal a coordinated system of tRNA modifications and translation of codon-biased transcripts that enhance expression of stress response proteins in mycobacteria.
Mycobacteria can adapt to the stress of human infection by entering a dormant state. Here the authors show that hypoxia-induced dormancy in
M. bovis
BCG involves the reprogramming of tRNA wobble modifications and copy numbers, coupled with biased use of synonymous codons in survival genes.
Journal Article
PARylation of 14-3-3 proteins controls the virulence of Magnaporthe oryzae
by
Zhang, Dongmei
,
Gao, Gaigai
,
Liu, Haibing
in
14-3-3 protein
,
14-3-3 Proteins - genetics
,
14-3-3 Proteins - metabolism
2024
Magnaporthe oryzae
is a devastating fungal pathogen that causes the rice blast disease worldwide. The post-translational modification of ADP-ribosylation holds significant importance in various fundamental biological processes. However, the specific function of this modification in
M. oryzae
remains unknown. This study revealed that Poly(ADP-ribosyl)ation (PARylation) executes a critical function in
M. oryzae
.
M. oryzae
Poly(ADP-ribose) polymerase 1 (PARP1) exhibits robust PARylation activity. Disruption of PARylation by
PARP1
knock-out or chemical inhibition reveals its involvement in
M. oryzae
virulence, particularly in appressorium formation. Furthermore, we identified two
M. oryzae
14-3-3 proteins, GRF1 and GRF2, as substrates of PARP1. Deletion of
GRF1
or
GRF2
results in delayed and dysfunctional appressorium, diminished plant penetration, and reduced virulence of the fungus. Biochemical and genetic evidence suggest that PARylation of 14-3-3s is essential for its function in
M. oryzae
virulence. Moreover, PARylation regulates 14-3-3 dimerization and is required for the activation of the mitogen-activated protein kinases (MAPKs), Pmk1 and Mps1. GRF1 interacts with both Mst7 and Pmk1, and bridges their interaction in a PARylation-dependent manner. This study unveils a distinctive mechanism that PARylation of 14-3-3 proteins controls appressorium formation through MAPK activation, and could facilitate the development of new strategies of rice blast disease control.
The role of PARylation, a modification with NAD
+
as substrate, in
Magnaporthe oryzae
virulence is investigated. MoPARP1-mediated PARylation of 14-3-3 proteins is found to be required for activation of Pmk1, the key mitogen-activated kinase dictating appressorium development and virulence.
Journal Article
Inverse modulation of plant immune and brassinosteroid signaling pathways by the receptor-like cytoplasmic kinase BIK1
by
Gao, Xiquan
,
Wang, Zonghua
,
Mengiste, Tesfaye
in
Animalia
,
Antibodies
,
Arabidopsis - growth & development
2013
Maintaining active growth and effective immune responses is often costly for a living organism to survive. Fine-tuning the shared cross-regulators is crucial for metazoans and plants to make a trade-off between growth and immunity. The Arabidopsis regulatory receptor-like kinase BAK1 complexes with the receptor kinases FLS2 in bacterial flagellin-triggered immunity and BRI1 in brassinosteroid (BR)-mediated growth. BR homeostasis and signaling unidirectionally modulate FLS2-mediated immune responses at multiple levels. We have shown previously that BIK1, a receptor-like cytoplasmic kinase, is directly phosphorylated by BAK1 and associates with FLS2/BAK1 complex in transducing flagellin signaling. In contrast to its positive role in plant immunity, we report here that BIK1 acts as a negative regulator in BR signaling. The bik1 mutant displays various BR hypersensitive phenotypes accompanied with increased accumulation of de-phosphorylated BES1 proteins and transcriptional regulation of BZR1 and BES1 target genes. BIK1 associates with BRI1, and is released from BRI1 receptor upon BR treatment, which is reminiscent of FLS2-BIK1 complex dynamics in flagellin signaling. The ligand-induced release of BIK1 from receptor complexes is associated with BIK1 phosphorylation. However, in contrast to BAK1-dependent FLS2-BIK1 dissociation, BAK1 is dispensable for BRI1-BIK1 dissociation. Unlike FLS2 signaling which depends on BAK1 to phosphorylate BIK1, BRI1 directly phosphorylates BIK1 to transduce BR signaling. Thus, BIK1 relays the signaling in plant immunity and BR-mediated growth via distinct phosphorylation by BAK1 and BRI1, respectively. Our studies indicate that BIK1 mediates inverse functions in plant immunity and development via dynamic association with specific receptor complexes and differential phosphorylation events.
Journal Article
Auxin-induced signaling protein nanoclustering contributes to cell polarity formation
2020
Cell polarity is fundamental to the development of both eukaryotes and prokaryotes, yet the mechanisms behind its formation are not well understood. Here we found that, phytohormone auxin-induced, sterol-dependent nanoclustering of cell surface transmembrane receptor kinase 1 (TMK1) is critical for the formation of polarized domains at the plasma membrane (PM) during the morphogenesis of cotyledon pavement cells (PC) in
Arabidopsis
. Auxin-induced TMK1 nanoclustering stabilizes flotillin1-associated ordered nanodomains, which in turn promote the nanoclustering of ROP6 GTPase that acts downstream of TMK1 to regulate cortical microtubule organization. In turn, cortical microtubules further stabilize TMK1- and flotillin1-containing nanoclusters at the PM. Hence, we propose a new paradigm for polarity formation: A diffusive signal triggers cell polarization by promoting cell surface receptor-mediated nanoclustering of signaling components and cytoskeleton-mediated positive feedback that reinforces these nanodomains into polarized domains.
The significance of protein nanoclustering in cell polarization is unclear. Here Pan et al. show that auxin-induced TMK1/sterol nanoclustering as well as microtubule-based positive feedback regulation of the TMK1/sterol nanoclusters is critical for cell polarity formation in Arabidopsis.
Journal Article
SPA70 is a potent antagonist of human pregnane X receptor
2017
Many drugs bind to and activate human pregnane X receptor (hPXR) to upregulate drug-metabolizing enzymes, resulting in decreased drug efficacy and increased resistance. This suggests that hPXR antagonists have therapeutic value. Here we report that SPA70 is a potent and selective hPXR antagonist. SPA70 inhibits hPXR in human hepatocytes and humanized mouse models and enhances the chemosensitivity of cancer cells, consistent with the role of hPXR in drug resistance. Unexpectedly, SJB7, a close analog of SPA70, is an hPXR agonist. X-ray crystallography reveals that SJB7 resides in the ligand-binding domain (LBD) of hPXR, interacting with the AF-2 helix to stabilize the LBD for coactivator binding. Differential hydrogen/deuterium exchange analysis demonstrates that SPA70 and SJB7 interact with the hPXR LBD. Docking studies suggest that the lack of the para-methoxy group in SPA70 compromises its interaction with the AF-2, thus explaining its antagonism. SPA70 is an hPXR antagonist and promising therapeutic tool.
The xenobiotic-activated human pregnane X receptor (hPXR) regulates drug metabolism. Here the authors develop hPXR modulators, which are of potential therapeutic interest and functionally and structurally characterize the antagonist SPA70 and the structurally related agonist SJB7.
Journal Article
Cladding Mode Fitting-Assisted Automatic Refractive Index Demodulation Optical Fiber Sensor Probe Based on Tilted Fiber Bragg Grating and SPR
2022
In the paper based on surface plasmon resonance (SPR) in a tilted fiber Bragg grating (TFBG), a novel algorithm is proposed, which facilitates demodulation of surrounding refractive index (SRI) via cladding mode interrogation and accelerates calibration and measurement of SRI. Refractive indices with a tiny index step of 2.2 × 10−5 are prepared by the dilution of glucose aqueous solution for the test and the calibration of this fiber sensor probe. To accelerate the calibration process, automatic selection of the most sensitive cladding mode is demonstrated. First, peaks of transmitted spectrum are identified and numbered. Then, sensitivities of several potentially sensitive cladding modes in amplitude adjacent to the left of the SPR area are calculated and compared. After that, we focus on the amplitudes of the cladding modes as a function of a SRI, and the highest sensitivity of −6887 dB/RIU (refractive index unit) is obtained with a scanning time of 15.77 s in the range from 1520 nm to 1620 nm. To accelerate the scanning speed of the optical spectrum analyzer (OSA), the wavelength resolution is reduced from 0.028 nm to 0.07 nm, 0.14 nm, and 0.28 nm, and consequently the scanning time is shortened to 6.31 s, 3.15 s, and 1.58 s, respectively. However, compared to 0.028 nm, the SRI sensitivity for 0.07 nm, 0.14 nm, and 0.28 nm is reduced to −5685 dB/RIU (17.5% less), −5415 dB/RIU (21.4% less), and −4359 dB/RIU (36.7% less), respectively. Thanks to the calculation of parabolic equation and weighted Gauss fitting based on the original data, the sensitivity is improved to −6332 dB/RIU and −6721 dB/RIU, respectively, for 0.07 nm, and the sensitivity is increased to −5850 dB/RIU and −6228 dB/RIU, respectively, for 0.14 nm.
Journal Article
Bifurcation of Arabidopsis NLR Immune Signaling via Ca2+-Dependent Protein Kinases
by
Chen, Xin
,
Chen, Sixue
,
Cheng, Cheng
in
Apoptosis
,
Arabidopsis - genetics
,
Arabidopsis - immunology
2013
Nucleotide-binding domain leucine-rich repeat (NLR) protein complexes sense infections and trigger robust immune responses in plants and humans. Activation of plant NLR resistance (R) proteins by pathogen effectors launches convergent immune responses, including programmed cell death (PCD), reactive oxygen species (ROS) production and transcriptional reprogramming with elusive mechanisms. Functional genomic and biochemical genetic screens identified six closely related Arabidopsis Ca²⁺-dependent protein kinases (CPKs) in mediating bifurcate immune responses activated by NLR proteins, RPS2 and RPM1. The dynamics of differential CPK1/2 activation by pathogen effectors controls the onset of cell death. Sustained CPK4/5/6/11 activation directly phosphorylates a specific subgroup of WRKY transcription factors, WRKY8/28/48, to synergistically regulate transcriptional reprogramming crucial for NLR-dependent restriction of pathogen growth, whereas CPK1/2/4/11 phosphorylate plasma membrane-resident NADPH oxidases for ROS production. Our studies delineate bifurcation of complex signaling mechanisms downstream of NLR immune sensors mediated by the myriad action of CPKs with distinct substrate specificity and subcellular dynamics.
Journal Article