Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
28,815
result(s) for
"Lin, Xiao"
Sort by:
A finite-time recurrent neural network for solving online time-varying Sylvester matrix equation based on a new evolution formula
2017
Sylvester equation is widely used to study the stability of a nonlinear system in the control field. In this paper, a finite-time Zhang neural network (FTZNN) is proposed and applied to online solution of time-varying Sylvester equation. Differing from the conventional accelerating method, the design of the proposed FTZNN model is based on a new evolution formula, which is presented and studied to accelerate the convergence speed of a recurrent neural network. Compared with the original Zhang neural network (ZNN) for time-varying Sylvester equation, the FTZNN model can converge to the theoretical time-varying solution within finite time, instead of converging exponentially with time. Besides, we can obtain the upper bound of the finite convergence time for the FTZNN model in theory. Simulation results show that the proposed FTZNN model achieves the better performance as compared with the original ZNN model for solving online time-varying Sylvester equation.
Journal Article
رحلة إلى الغابة
by
Xu, Han active 2010 مؤلف
,
محمد، شيماء مترجم
,
رمضان، سالي مراجع
in
القصص الصينية قرن 21 ترجمات إلى العربية
,
الأدب الصيني قرن 21 ترجمات إلى العربية
2020
ذات الرداء الأحمر، التي تشعر دائما بالفضول تجاه العالم، تريد زيارة جدتها عبر الغابة بمفردها. لكنها لا تستطيع رؤية طريقها، ما هي الصعوبات التي ستواجهها ؟ كيف يمكنها مواجهة الذئب الكبير بمفردها في الغابة ؟ في طريقها، تلتقي بأرنب وقنفذ وظربان. تتعلم استخدام مشاعرها لإدراك العالم، وشجاعتها وحكمتها لإنقاذ نفسها من المخاطر. والمثير للدهشة أن الذئب الكبير في عينيها لطيف جدا، لم يأكل الذئب السيئ الكبير ذات الرداء الأحمر هذه المرة فحسب، بل ساعد أيضا ذو الرداء الأحمر الصغير في الوصول إلى منزل جدته.
Single-cell characterization of self-renewing primary trophoblast organoids as modeling of EVT differentiation and interactions with decidual natural killer cells
by
Zhuang, Bai-Mei
,
Cui, Xin-Yuan
,
Wang, Li
in
Achievement tests
,
Angiogenesis
,
Animal Genetics and Genomics
2023
Background
Extravillous trophoblast cell (EVT) differentiation and its communication with maternal decidua especially the leading immune cell type natural killer (NK) cell are critical events for placentation. However, appropriate in vitro modelling system and regulatory programs of these two events are still lacking. Recent trophoblast organoid (TO) has advanced the molecular and mechanistic research in placentation. Here, we firstly generated the self-renewing TO from human placental villous and differentiated it into EVTs (EVT-TO) for investigating the differentiation events. We then co-cultured EVT-TO with freshly isolated decidual NKs for further study of cell communication. TO modelling of EVT differentiation as well as EVT interaction with dNK might cast new aspect for placentation research.
Results
Single-cell RNA sequencing (scRNA-seq) was applied for comprehensive characterization and molecular exploration of TOs modelling of EVT differentiation and interaction with dNKs. Multiple distinct trophoblast states and dNK subpopulations were identified, representing CTB, STB, EVT, dNK1/2/3 and dNKp. Lineage trajectory and Seurat mapping analysis identified the close resemblance of TO and EVT-TO with the human placenta characteristic. Transcription factors regulatory network analysis revealed the cell-type specific essential TFs for controlling EVT differentiation. CellphoneDB analysis predicted the ligand-receptor complexes in dNK-EVT-TO co-cultures, which relate to cytokines, immunomodulation and angiogenesis. EVT was known to affect the immune properties of dNK. Our study found out that on the other way around, dNKs could exert effects on EVT causing expression changes which are functionally important.
Conclusion
Our study documented a single-cell atlas for TO and its applications on EVT differentiation and communications with dNKs, and thus provide methodology and novel research cues for future study of human placentation.
Journal Article
ThermomiR-377-3p-induced suppression of Cirbp expression is required for effective elimination of cancer cells and cancer stem-like cells by hyperthermia
by
Dai, Guan-Qi
,
Wei, Fang
,
Lin, Xiao-Lin
in
Apoptosis
,
Biomedical and Life Sciences
,
Biomedicine
2024
Background
In recent years, the development of adjunctive therapeutic hyperthermia for cancer therapy has received considerable attention. However, the mechanisms underlying hyperthermia resistance are still poorly understood. In this study, we investigated the roles of cold‑inducible RNA binding protein (Cirbp) in regulating hyperthermia resistance and underlying mechanisms in nasopharyngeal carcinoma (NPC).
Methods
CCK-8 assay, colony formation assay, tumor sphere formation assay, qRT-PCR, Western blot were employed to examine the effects of hyperthermia (HT), HT + oridonin(Ori) or HT + radiotherapy (RT) on the proliferation and stemness of NPC cells. RNA sequencing was applied to gain differentially expressed genes upon hyperthermia. Gain-of-function and loss-of-function experiments were used to evaluate the effects of RNAi-mediated Cirbp silencing or Cirbp overexpression on the sensitivity or resistance of NPC cells and cancer stem-like cells to hyperthermia by CCK-8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay, and in subcutaneous xenograft animal model. miRNA transient transfection and luciferase reporter assay were used to demonstrate that Cirbp is a direct target of miR-377-3p. The phosphorylation levels of key members in ATM-Chk2 and ATR-Chk1 pathways were detected by Western blot.
Results
Our results firstly revealed that hyperthermia significantly attenuated the stemness of NPC cells, while combination treatment of hyperthermia and oridonin dramatically increased the killing effect on NPC cells and cancer stem cell (CSC)‑like population. Moreover, hyperthermia substantially improved the sensitivity of radiation‑resistant NPC cells and CSC‑like cells to radiotherapy. Hyperthermia noticeably suppressed Cirbp expression in NPC cells and xenograft tumor tissues. Furthermore, Cirbp inhibition remarkably boosted anti‑tumor‑killing activity of hyperthermia against NPC cells and CSC‑like cells, whereas ectopic expression of Cirbp compromised tumor‑killing effect of hyperthermia on these cells, indicating that Cirbp overexpression induces hyperthermia resistance. ThermomiR-377-3p improved the sensitivity of NPC cells and CSC‑like cells to hyperthermia in vitro by directly suppressing Cirbp expression. More importantly, our results displayed the significantly boosted sensitization of tumor xenografts to hyperthermia by Cirbp silencing in vivo, but ectopic expression of Cirbp almost completely counteracted hyperthermia-mediated tumor cell-killing effect against tumor xenografts in vivo. Mechanistically, Cirbp silencing-induced inhibition of DNA damage repair by inactivating ATM-Chk2 and ATR-Chk1 pathways, decrease in stemness and increase in cell death contributed to hyperthermic sensitization; conversely, Cirbp overexpression-induced promotion of DNA damage repair, increase in stemness and decrease in cell apoptosis contributed to hyperthermia resistance.
Conclusion
Taken together, these findings reveal a previously unrecognized role for Cirbp in positively regulating hyperthermia resistance and suggest that thermomiR-377-3p and its target gene Cirbp represent promising targets for therapeutic hyperthermia.
Journal Article
Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimer’s disease
by
Yu, Xiao-lin
,
Sun, Xiao-ying
,
Dong, Quan-Xiu
in
Alzheimer Disease - drug therapy
,
Alzheimer Disease - immunology
,
Alzheimer Disease - pathology
2021
Background
Tau pathology is a hallmark of Alzheimer’s disease (AD) and other tauopathies. During disease progression, abnormally phosphorylated forms of tau aggregate and accumulate into neurofibrillary tangles, leading to synapse loss, neuroinflammation, and neurodegeneration. Thus, targeting of tau pathology is expected to be a promising strategy for AD treatment.
Methods
The effect of rutin on tau aggregation was detected by thioflavin T fluorescence and transmission electron microscope imaging. The effect of rutin on tau oligomer-induced cytotoxicity was assessed by MTT assay. The effect of rutin on tau oligomer-mediated the production of IL-1β and TNF-α in vitro was measured by ELISA. The uptake of extracellular tau by microglia was determined by immunocytochemistry. Six-month-old male Tau-P301S mice were treated with rutin or vehicle by oral administration daily for 30 days. The cognitive performance was determined using the Morris water maze test, Y-maze test, and novel object recognition test. The levels of pathological tau, gliosis, NF-kB activation, proinflammatory cytokines such as IL-1β and TNF-α, and synaptic proteins including synaptophysin and PSD95 in the brains of the mice were evaluated by immunolabeling, immunoblotting, or ELISA.
Results
We showed that rutin, a natural flavonoid glycoside, inhibited tau aggregation and tau oligomer-induced cytotoxicity, lowered the production of proinflammatory cytokines, protected neuronal morphology from toxic tau oligomers, and promoted microglial uptake of extracellular tau oligomers in vitro. When applied to Tau-P301S mouse model of tauopathy, rutin reduced pathological tau levels, regulated tau hyperphosphorylation by increasing PP2A level, suppressed gliosis and neuroinflammation by downregulating NF-kB pathway, prevented microglial synapse engulfment, and rescued synapse loss in mouse brains, resulting in a significant improvement of cognition.
Conclusion
In combination with the previously reported therapeutic effects of rutin on Aβ pathology, rutin is a promising drug candidate for AD treatment based its combinatorial targeting of tau and Aβ.
Journal Article
A finite-time convergent Zhang neural network and its application to real-time matrix square root finding
by
Xiao, Lin
in
Artificial Intelligence
,
Computational Biology/Bioinformatics
,
Computational Science and Engineering
2019
In this paper, a finite-time convergent Zhang neural network (ZNN) is proposed and studied for matrix square root finding. Compared to the original ZNN (OZNN) model, the finite-time convergent ZNN (FTCZNN) model fully utilizes a nonlinearly activated sign-bi-power function, and thus possesses faster convergence ability. In addition, the upper bound of convergence time for the FTCZNN model is theoretically derived and estimated by solving differential inequalities. Simulative comparisons are further conducted between the OZNN model and the FTCZNN model under the same conditions. The results validate the effectiveness and superiority of the FTCZNN model for matrix square root finding.
Journal Article
Lasting antibody and T cell responses to SARS-CoV-2 in COVID-19 patients three months after infection
2021
The dynamics, duration, and nature of immunity produced during SARS-CoV-2 infection are still unclear. Here, we longitudinally measured virus-neutralising antibody, specific antibodies against the spike (S) protein, receptor-binding domain (RBD), and the nucleoprotein (N) of SARS-CoV-2, as well as T cell responses, in 25 SARS-CoV-2-infected patients up to 121 days post-symptom onset (PSO). All patients seroconvert for IgG against N, S, or RBD, as well as IgM against RBD, and produce neutralising antibodies (NAb) by 14 days PSO, with the peak levels attained by 15–30 days PSO. Anti-SARS-CoV-2 IgG and NAb remain detectable and relatively stable 3–4 months PSO, whereas IgM antibody rapidly decay. Approximately 65% of patients have detectable SARS-CoV-2-specific CD4
+
or CD8
+
T cell responses 3–4 months PSO. Our results thus provide critical evidence that IgG, NAb, and T cell responses persist in the majority of patients for at least 3–4 months after infection.
Understanding if lasting immune responses can be induced by SARS-CoV-2 infection is important for controlling the COVID-19 pandemic. Here, the authors show, in a cohort of 25 patients, that IgG and T cell responses, as well as neutralising antibody, are still detectable against various SARS-CoV-2 proteins 3 months post-symptom onset, while IgM levels largely wane at this time.
Journal Article
miR-27a induced by colon cancer cells in HLECs promotes lymphangiogenesis by targeting SMAD4
2017
Metastasis of tumor cells occurs through lymphatic vessels, blood vessels and transcoelomic spreading. Growing evidence from in vivo and in vitro studies has indicated that tumor lymphangiogenesis facilitates metastasis. However, the regulation of lymphangiogenesis in colon cancer remains unclear. The aims of this study were to identify key miRNAs in colon cancer lymphangiogenesis and to investigate its target and mechanism.
miRNA microarray analysis was conducted to identify miRNAs in human lymphatic endothelial cells (HLECs) that were regulated by co-cultured human colon cancer cells. Gain- and loss-of-function studies were performed to determine the function of miR-27a, a top hint, on lymphangiogenesis and migration in HLECs. Furthermore, bioinformatics prediction and experimental validation were performed to identify miR-27a target genes in lymphangiogenesis.
We found that expression of miR-27a in HLECs was induced by co-culturing with colon cancer cells. Over-expression of miR-27a in HLECs enhanced lymphatic tube formation and migration, whereas inhibition of miR-27a reduced lymphatic tube formation and migration. Luciferase reporter assays showed that miR-27a directly targeted SMAD4, a pivotal component of the TGF-β pathway. In addition, gain-of-function and loss-of-function experiments showed that SMAD4 negatively regulated the length of lymphatic vessels formed by HLECs and migration.
Our data indicated that colon cancer cell induced the expression of miR-27a in HLECs, which promoted lymphangiogenesis by targeting SMAD4. Our finding implicated miR-27a as a potential target for new anticancer therapies in colon cancer.
Journal Article
USP8 inhibition reshapes an inflamed tumor microenvironment that potentiates the immunotherapy
2022
Anti-PD-1/PD-L1 immunotherapy has achieved impressive therapeutic outcomes in patients with multiple cancer types. However, the underlined molecular mechanism(s) for moderate response rate (15–25%) or resistance to PD-1/PD-L1 blockade remains not completely understood. Here, we report that inhibiting the deubiquitinase, USP8, significantly enhances the efficacy of anti-PD-1/PD-L1 immunotherapy through reshaping an inflamed tumor microenvironment (TME). Mechanistically, USP8 inhibition increases PD-L1 protein abundance through elevating the TRAF6-mediated K63-linked ubiquitination of PD-L1 to antagonize K48-linked ubiquitination and degradation of PD-L1. In addition, USP8 inhibition also triggers innate immune response and MHC-I expression largely through activating the NF-κB signaling. Based on these mechanisms, USP8 inhibitor combination with PD-1/PD-L1 blockade significantly activates the infiltrated CD8
+
T cells to suppress tumor growth and improves the survival benefit in several murine tumor models. Thus, our study reveals a potential combined therapeutic strategy to utilize a USP8 inhibitor and PD-1/PD-L1 blockade for enhancing anti-tumor efficacy.
The regulatory mechanisms of PD-L1 posttranslational modifications are not completely understood. Here the authors show that USP8 negatively regulates PD-L1 protein abundance by removing the K63-linked ubiquitination of PD-L1; while USP8 inhibition increases MHC-I expression and triggers anti-tumour immune responses through activating NF-κB signalling.
Journal Article