Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
58
result(s) for
"Lin, Yangting"
Sort by:
China’s present and future lunar exploration program
by
Wang, Chi
,
Lin, Yangting
,
Li, Chunlai
in
Chinese space program
,
Exploration
,
Lunar exploration
2019
Since the beginning of the 21st century, the pace of lunar exploration has accelerated, with more than a dozen probes having undertaken scientific exploration of the Moon. Prominent among these have been the robotic “Chang’E” (CE) missions of the China Lunar Exploration Program (CLEP). We discuss technological and scientific goals and achievements for the four completed, and four planned, CE missions, and longer-term goals and plans of the CLEP beyond the CE missions. The exploration plan is flexible and iterative, with an emphasis on international cooperation.
Journal Article
Enstatite chondrites: condensation and metamorphism under extremely reducing conditions and contributions to the Earth
2022
Enstatite chondrites are a small clan of meteorites, only ~ 1% out of all meteorite collection. However, they are the most reduced meteorites and have almost identical isotopic compositions to those of the Earth, suggestive of significant contributions to the latter and other terrestrial planets. Enstatite chondrites contain a unique mineral inventory of sulfides of typical lithophile elements, Si-bearing metal, silicide and phosphide, which record the nebular processes and the thermal metamorphism in asteroidal bodies under extremely reducing environments. EH group is mainly characteristic of the higher Si content of metallic Fe–Ni and the higher MnS contents of sulfides than EL group, indicative of a more reducing condition than the latter. However, the fugacity pH2S could be the same in both EH and EL regions, because it was buffered by kamacite and troilite. The majority of sulfides condensed from the nebula, partially enclosing schreibersite micron-spherules formed probably by early melting. Another part of troilite, sphalerite and djerfisherite, intergrown with perryite, were produced via sulfidation of metallic Fe–Ni. Minor exotic components were also found in enstatite chondrites, including Ca-, Al-rich inclusions and FeO-rich silicate clasts. The Ca-, Al-rich inclusions are identical to those in carbonaceous chondrites except for the alteration under reducing environments, and the FeO-rich silicate clasts show reduction reactions, both suggestive of migration of dust in the protoplanetary disk. The highly reducing conditions (as C/O ratios) might be established via repeating evaporation and condensation of water ice and organic matter across the snow line along the protoplanetary disk, but need to find evidence. Another issue is the preservation of submicron-to-micron-sized presolar grains during high-temperature condensation of the major constituent minerals. After accretion, the parent bodies of EH and EL chondrites probably experienced distinct thermal histories, indicated by their distinct petrologic-type distributions and different correlations with the closure temperatures determined by the FeS contents of sulfides in contact with troilite.The composition of (Mg, Mn, Fe)S, a key indicator for condensation and metamorphism of enstatite chondrites.
Journal Article
Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts
2021
The Moon has a magmatic and thermal history that is distinct from that of the terrestrial planets
1
. Radioisotope dating of lunar samples suggests that most lunar basaltic magmatism ceased by around 2.9–2.8 billion years ago (Ga)
2
,
3
, although younger basalts between 3 Ga and 1 Ga have been suggested by crater-counting chronology, which has large uncertainties owing to the lack of returned samples for calibration
4
,
5
. Here we report a precise lead–lead age of 2,030 ± 4 million years ago for basalt clasts returned by the Chang’e-5 mission, and a
238
U/
204
Pb ratio (
µ
value)
6
of about 680 for a source that evolved through two stages of differentiation. This is the youngest crystallization age reported so far for lunar basalts by radiometric dating, extending the duration of lunar volcanism by approximately 800–900 million years. The
µ
value of the Chang’e-5 basalt mantle source is within the range of low-titanium and high-titanium basalts from Apollo sites (
µ
value of about 300–1,000), but notably lower than those of potassium, rare-earth elements and phosphorus (KREEP) and high-aluminium basalts
7
(
µ
value of about 2,600–3,700), indicating that the Chang’e-5 basalts were produced by melting of a KREEP-poor source. This age provides a pivotal calibration point for crater-counting chronology in the inner Solar System and provides insight on the volcanic and thermal history of the Moon.
Basalt samples returned from the Moon by the Chang’e-5 mission are revealed to be two billion years old by radioisotopic dating, providing insight on the volcanic history of the Moon.
Journal Article
China’s Mars Exploration Mission and Science Investigation
by
Liu, Jianjun
,
Lin, Yangting
,
Geng, Yan
in
Aerospace Technology and Astronautics
,
Astrophysics and Astroparticles
,
Chinese space program
2021
China’s first Mars exploration mission (HuoXing-1) has been named as ‘Tianwen-1’ meaning Heaven Inquiry. Tianwen-1 was launched on July 23, 2020. In this paper, the scientific objectives of earlier and current Mars exploration missions worldwide are reviewed, and the scientific objectives, payloads and preliminary scientific investigation plan of China’s first Mars exploration mission are introduced, and expected scientific achievements are analyzed.
Journal Article
A solar wind-derived water reservoir on the Moon hosted by impact glass beads
2023
The past two decades of lunar exploration have seen the detection of substantial quantities of water on the Moon’s surface. It has been proposed that a hydrated layer exists at depth in lunar soils, buffering a water cycle on the Moon globally. However, a reservoir has yet to be identified for this hydrated layer. Here we report the abundance, hydrogen isotope composition and core-to-rim variations of water measured in impact glass beads extracted from lunar soils returned by the Chang’e-5 mission. The impact glass beads preserve hydration signatures and display water abundance profiles consistent with the inward diffusion of solar wind-derived water. Diffusion modelling estimates diffusion timescales of less than 15 years at a temperature of 360 K. Such short diffusion timescales suggest an efficient water recharge mechanism that could sustain the lunar surface water cycle. We estimate that the amount of water hosted by impact glass beads in lunar soils may reach up to 2.7 × 1014 kg. Our direct measurements of this surface reservoir of lunar water show that impact glass beads can store substantial quantities of solar wind-derived water on the Moon and suggest that impact glass may be water reservoirs on other airless bodies.Analysis of lunar soils sampled by the Chang’e-5 mission suggests that impact glass beads may host a substantial inventory of solar wind-derived water on the Moon’s surface.
Journal Article
Surges in volcanic activity on the Moon about two billion years ago
2023
The history of mare volcanism critically informs the thermal evolution of the Moon. However, young volcanic eruptions are poorly constrained by remote observations and limited samples, hindering an understanding of mare eruption flux over time. The Chang’e-5 mission returned the youngest lunar basalts thus far, offering a window into the Moon’s late-stage evolution. Here, we investigate the mineralogy and geochemistry of 42 olivine and pyroxene crystals from the Chang’e-5 basalts. We find that almost all of them are normally zoned, suggesting limited magma recharge or shallow-level assimilation. Most olivine grains record a short timescale of cooling. Thermal modeling used to estimate the thickness and volume of the volcanism sampled by Chang’e-5 reveals enhanced magmatic flux ~2 billion years ago, suggesting that while overall lunar volcanic activity may decrease over time, episodic eruptions at the final stage could exhibit above average eruptive fluxes, thus revising models of lunar thermal evolution.
This work estimates the eruption volume of the young Chang’e-5 lunar samples using diffusion chronology and thermodynamic simulations, and finds that there was an increase in volcanic eruption flux about 2.0 billion years ago.
Journal Article
Volcanic history of the Imbrium basin
2015
We report the surface exploration by the lunar rover Yutu that landed on the young lava flow in the northeastern part of the Mare Imbrium, which is the largest basin on the nearside of the Moon and is filled with several basalt units estimated to date from 3.5 to 2.0 Ga. The onboard lunar penetrating radar conducted a 114-m-long profile, which measured a thickness of ∼5 m of the lunar regolith layer and detected three underlying basalt units at depths of 195, 215, and 345 m. The radar measurements suggest underestimation of the global lunar regolith thickness by other methods and reveal a vast volume of the last volcano eruption. The in situ spectral reflectance and elemental analysis of the lunar soil at the landing site suggest that the young basalt could be derived from an ilmenite- rich mantle reservoir and then assimilated by 10–20% of the last residual melt of the lunar magma ocean.
Journal Article
Long-term reduced lunar mantle revealed by Chang’e-5 basalt
2024
The redox state of a planetary mantle affects its thermal evolution. The redox evolution of lunar mantle, however, remains unclear due to limited oxygen fugacity (
f
O
2
) constraints from young lunar samples. Here, we report vanadium (V) oxybarometers on olivine and spinel conducted on 27 Chang’e-5 basalt fragments from 2.0 billion years ago. These fragments yield an average
f
O
2
of ΔIW -0.84 ± 0.65 (2σ), which closely aligns with the Apollo samples from 3.6–3.0 billion years ago. This temporal uniformity indicates the lunar mantle remained reduced. This observation reveals that the processes responsible for oxidizing mantles of Earth and Mars either did not occur or had negligible oxidizing effects on the Moon. The long-term reduced mantle may lead to a distinctive volatile degassing pathway for the Moon. It could also make the lunar mantle more difficult to melt, preventing internal heat dissipation and consequently resulting in a slow cooling rate.
The lunar mantle may have remained reduced, according to the oxygen fugacity of 2.0 Ga Chang’e-5 basalt that is similar to 3.6 − 3.0 Ga Apollo basalts and pyroclastic glasses.
Journal Article
Distribution and Abundance of Solar Wind‐Derived Water in Chang'E‐5 Core Samples and Its Implications
2024
Knowledge regarding the abundance and distribution of solar wind (SW)‐sourced water (OH/H2O) on the Moon in the shallow subsurface remains limited. Here, we report the NanoSIMS measurements of H abundances and D/H ratios on soil grains from three deepest sections of the Chang'E‐5 drill core sampled at depths of 0.45–0.8 m. High water contents of 0.13–1.3 wt.% are present on approximately half of the grain surfaces (topmost ∼100 nm), comparable to the values of Chang'E‐5 scooped soils. The extremely low δD values (as low as −995‰) and negative correlations between δD and water contents indicate that SW implantation is an important source of water beneath the lunar surface. The results are indicative of homogeneous distribution of SW‐derived water in the vertical direction, providing compelling evidence for the well‐mixed nature of the lunar regolith. Moreover, the findings demonstrate that the shallow subsurface regolith of the Moon contains a considerable amount of water. Plain Language Summary Recently, China's Chang'E‐5 mission targeted a higher latitude on the Moon than previous Apollo and Luna missions, and brought back scooped and drilled samples to the Earth. These new soil samples provide an opportunity to investigate the distribution, abundance, and origin(s) of water in Moon's middle latitude. Here, we focus on using the NanoSIMS technique to analyze water content on soil near‐surface regions to understand whether the solar wind (SW)‐derived water could be preserved after burial at depth. Our results show that more than half of the core soils have high water contents on the rims of grains, similar to those of the Chang'E‐5 scooped soils. This finding suggests that the SW remains an important source of water in the Moon's subsurface. Our work provides direct evidence that the lunar regolith below the surface contains considerable water from SW implantation. This type of water could be a promising water resource in future exploration. Key Points More than half of the soils from the single drill core have high water contents and low D/H ratios below the surface The solar wind (SW)‐derived water could be preserved for hundreds of millions of years if buried at depth Lunar regolith from the drill core contains considerable water from SW implantation, which is much more accessible
Journal Article
New Lunar Crater Production Function Based on High-Resolution Images
2023
The lunar crater production function describes the general pattern of the size–frequency distribution of craters on the lunar surface, and it is the foundation of the surface dating method via crater counting. In addition, the lunar crater production function has been extended to other celestial bodies and used to analyze the meteorite flux of the inner solar system. The basic process of establishing the lunar crater production function is to map in an ideal way the primary craters in different geological units, and then to normalize all of the corresponding size–frequency distributions using a mathematical model. Currently, the most widely used lunar crater production functions have been established based on the images acquired in the last century. However, now they can be refined with newly obtained high-resolution images. In this research, we mapped all of the primary craters in 13 regions on the lunar surface with the images acquired using the narrow angle camera and wide angle camera onboard the Lunar Reconnaissance Orbiter, and then we fitted the lunar crater production function with a polynomial. The resultant new lunar crater production function is largely comparable with the previous results, and the difference is mainly at the large diameter end. We analyzed the uncertainty of model fitting as well as the difference in the crater measurements and demonstrated the reliability of the new production function. It is expected to refine the lunar surface dating models, which can provide more accurate information on the impact rate in related studies.
Journal Article