Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
625
result(s) for
"Lin, Yu-Jia"
Sort by:
Eye-sidedness does not drive differences in growth and maturation in the Indian halibut (Psettodes erumei) from the Western Arabian Gulf
2026
The Indian halibut
Psettodes erumei
(Family Psettodidae), a primitive lineage of flatfishes exhibiting both sinistral and dextral morphs, provides a unique model for examining the evolutionary significance of morphological asymmetry in flatfishes. This study tested whether eye-sidedness influences somatic growth, body shape, and reproductive traits in
P. erumei
from the western Arabian Gulf. A total of 215 individuals were collected between 2020 and 2022, with sinistral and dextral morphs occurring in near-equal proportions. Model selection based on Akaike weights revealed that sex, rather than eye-sidedness, was the primary factor influencing length–weight relationships and growth, with females attaining significantly larger asymptotic lengths. Eye-sidedness had no detectable effect on gonadosomatic index patterns or length at 50% maturity. While Procrustes regression detected statistically significant differences in body landmarks and semilandmarks between morphs, these differences were minor and likely biologically negligible. Overall, the results support the hypothesis that eye-sidedness in
P. erumei
does not confer a measurable evolutionary advantage and imply that differences in developmental mechanisms, rather than adaptive advantages, played a primary role in fixing directional asymmetry in most flatfish lineages. Future research into the molecular and developmental pathways governing eye-sidedness will be essential for understanding why the vast majority of flatfish species exhibit monomorphic asymmetry.
Journal Article
Cucumber mosaic virus coat protein modulates the accumulation of 2b protein and antiviral silencing that causes symptom recovery in planta
2017
Shoot apical meristems (SAM) are resistant to most plant viruses due to RNA silencing, which is restrained by viral suppressors of RNA silencing (VSRs) to facilitate transient viral invasion of the SAM. In many cases chronic symptoms and long-term virus recovery occur, but the underlying mechanisms are poorly understood. Here, we found that wild-type Cucumber mosaic virus (CMVWT) invaded the SAM transiently, but was subsequently eliminated from the meristems. Unexpectedly, a CMV mutant, designated CMVRA that harbors an alanine substitution in the N-terminal arginine-rich region of the coat protein (CP) persistently invaded the SAM and resulted in visible reductions in apical dominance. Notably, the CMVWT virus elicited more potent antiviral silencing than CMVRA in newly emerging leaves of infected plants. However, both viruses caused severe symptoms with minimal antiviral silencing effects in the Arabidopsis mutants lacking host RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) or SUPPRESSOR OF GENE SILENCING 3 (SGS3), indicating that CMVWT induced host RDR6/SGS3-dependent antiviral silencing. We also showed that reduced accumulation of the 2b protein is elicited in the CMVWT infection and consequently rescues potent antiviral RNA silencing. Indeed, co-infiltration assays showed that the suppression of posttranscriptional gene silencing mediated by 2b is more severely compromised by co-expression of CPWT than by CPRA. We further demonstrated that CPWT had high RNA binding activity leading to translation inhibition in wheat germ systems, and CPWT was associated with SGS3 into punctate granules in vivo. Thus, we propose that the RNAs bound and protected by CPWT possibly serve as templates of RDR6/SGS3 complexes for siRNA amplification. Together, these findings suggest that the CMV CP acts as a central hub that modulates antiviral silencing and VSRs activity, and mediates viral self-attenuation and long-term symptom recovery.
Journal Article
Directional asymmetry in gonad length indicates moray eels (Teleostei, Anguilliformes, Muraenidae) are “right-gonadal”
2023
Directional asymmetry indicates a unidirectional deviation from perfect bilateral symmetry, which was rarely examined in the inner organs of the teleost (Teleostei) compared to external traits. This study examines the directional asymmetry in the gonad length of 20 species of moray eels (Muraenidae) and two outgroup species with 2959 individuals. We tested three hypotheses: (1) moray eel species did not exhibit directional asymmetry in the gonad length; (2) the directional asymmetry pattern was the same for all selected species; (3) the directional asymmetry was not related to the major habitat types, depth and size classes, and taxonomic closeness of the species. Moray eels were generally “right-gonadal”, the right gonad length being constantly and significantly longer than the left one in all studied Muraenidae species. The degree of asymmetry varied among species and was not significantly related to taxonomic closeness. The habitat types, depth, and size classes had intermingled effects on observed asymmetry without a clear correspondence. The directional asymmetry in the gonad length is a unique and widely occurring phenomenon in the Family Muraenidae, which was likely a by-product in the evolutionary history without significant disadvantage in survival.
Journal Article
The Impact of Intellectual Capital on the Digital Transformation of Accountancy Firms in Taiwan
2025
This study examines the impact of intellectual capital on the benefits of digital transformation in accounting firms based on the Resource-Based View (RBV) and the Dynamic Capability Theory (DCT). Using a survey methodology targeting industry professionals, the analysis reveals a general consensus among employees that digital transformation enhances quality and efficiency, reduces workload, and alleviates stress. Regression analysis shows that the three dimensions of intellectual capital—human capital, innovation capital, and process capital—positively influence the perceived benefits of digital transformation in accounting firms. These findings underscore the pivotal role of intellectual capital as a critical source of value creation in the digital transformation process. Notably, innovation capital demonstrates a statistically significant positive relationship with employee satisfaction metrics, such as workload reduction and stress alleviation. This indicates that targeted investments in innovation and well-designed digital transformation strategies can substantially improve job satisfaction, highlighting the transformative potential of digital initiatives in advancing the careers of accounting professionals. While digital transformation presents inherent challenges, its successful implementation can deliver substantial benefits, offering valuable guidance for accounting firms navigating the complexities of digital adaptation.
Journal Article
RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana
2010
In diverse eukaryotic organisms, Dicer-processed, virus-derived small interfering RNAs direct antiviral immunity by RNA silencing or RNA interference. Here we show that in addition to core dicing and slicing components of RNAi, the RNAi-mediated viral immunity in Arabidopsis thaliana requires host RNA-directed RNA polymerase (RDR) 1 or RDR6 to produce viral secondary siRNAs following viral RNA replication-triggered biogenesis of primary siRNAs. We found that the two antiviral RDRs exhibited specificity in targeting the tripartite positive-strand RNA genome of cucumber mosaic virus (CMV). RDR1 preferentially amplified the 5'-terminal siRNAs of each of the three viral genomic RNAs, whereas an increased production of siRNAs targeting the 3' half of RNA3 detected in rdr1 mutant plants appeared to be RDR6-dependent. However, siRNAs derived from a single-stranded 336-nucleotide satellite RNA of CMV were not amplified by either antiviral RDR, suggesting avoidance of the potent RDR-dependent silencing as a strategy for the molecular parasite of CMV to achieve preferential replication. Our work thus identifies a distinct mechanism for the amplification of immunity effectors, which together with the requirement for the biogenesis of endogenous siRNAs, may play a role in the emergence and expansion of eukaryotic RDRs.
Journal Article
Smart phosphorescence from solid to water through progressive assembly strategy based on dual phosphorescent sources
2023
Developing smart room‐temperature phosphorescence (RTP) materials with facile and efficient strategies have attracted increasing attention. Herein, tunable RTP materials with two phosphorescent sources and stepwise enhanced phosphorescence in water are obtained through an in‐situ self‐assembly strategy based on the sensitization of phosphors by trimesic acid (TMA) through simple doping and the rigidification of phosphors by hydrogen‐bonded organic frameworks (HOFs). As expected, doped TMA+phosphors simultaneously promote the RTP emission of phosphors and maintain TMA phosphorescence. In‐situ assembled HOF(MA‐TMA)@phosphors facilitate smart RTP emission in water due to the coexistence of phosphorescent HOF(MA‐TMA) host and phosphors guest. Additionally, such RTP materials with good processability demonstrate the application potential in information security, benefitting from their varied afterglow lifetimes and easy luminous recognition in the darkness. This work will inspire the design of dual phosphorescent source RTP systems and provide new strategies for the development of smart RTP materials in water.
Journal Article
Anti-bacterial activity of baicalin against APEC through inhibition of quorum sensing and inflammatory responses
2019
Avian pathogenic
Escherichia coli
(APEC), collectively known as causative agent of extraintestinal infections, is an important cause of morbidity and mortality in poultry. Currently, quorum sensing (QS), biofilm formation and virulence factors are considered as novel prospective targets for antimicrobial therapy to control APEC invasion. In addition, inflammatory responses are also served as the major pathological features of APEC invasion. This study was aimed to explore the effect of baicalin on APEC and APEC-induced inflammatory responses. After treatment with baicalin, we mainly examined the AI-2 secretion, biofilm formation, expression of virulence genes of APEC, and the levels of inflammatory cytokines, as well as the expression of NF-κB pathway. Our results showed that baicalin significantly inhibited the QS via decreasing the AI-2 secretion, biofilm formation, and the expression of virulence genes of APEC such as
LsrB, LsrK, LuxS, pfs, H-NS, fimA, fimB, fyuA, csgA, csgB
, and
rpoS
. Moreover, baicalin significantly attenuated the release of lactate dehydrogenase (LDH), and the adhesion of APEC to chicken type II pneumocytes to reduce cell damage. Furthermore, baicalin also inhibited the expression of pro-inflammatory cytokines and NF-κB activation. Thus, our data revealed that baicalin could interfere with the quorum sensing, biofilm formation and virulence genes expression to relieve the APEC pathogenicity. Additionally, baicalin decreased the inflammatory responses of chicken type II pneumocytes induced by APEC. Taken together, these data provide a novel potential pharmaco-therapeutic approach to chicken colibacillosis.
Journal Article
ATF6 aggravates acinar cell apoptosis and injury by regulating p53/AIFM2 transcription in Severe Acute Pancreatitis
by
Luo, Min
,
Jin, Yang-Chen
,
Cao, Rong-Chang
in
Acinar Cells - pathology
,
Activating Transcription Factor 6 - genetics
,
Activating Transcription Factor 6 - metabolism
2020
There is no curative therapy for severe acute pancreatitis (SAP) due to poor understanding of its molecular mechanisms. Endoplasmic reticulum (ER) stress is involved in SAP and increased expression of ATF6 has been detected in SAP patients. Here, we aimed to investigate the role of ATF6 in a preclinical SAP mouse model and characterize its regulatory mechanism.
Pancreatic tissues of healthy and SAP patients were collected during surgery. Humanized PRSS1 transgenic mice were treated with caerulein to mimic the SAP development, which was crossed to an ATF6 knockout mouse line, and pancreatic tissues from the resulting pups were screened by proteomics. Adenovirus-mediated delivery to the pancreas of SAP mice was used for shRNA-based knockdown or overexpression. The potential functions and mechanisms of ATF6 were clarified by immunofluorescence, immunoelectron microscopy, Western blotting, qRT-PCR, ChIP-qPCR and luciferase reporter assay.
Increased expression of ATF6 was associated with elevated apoptosis, ER and mitochondrial disorder in pancreatic tissues from SAP patients and PRSS1 mice. Knockout of ATF6 in SAP mice attenuated acinar injury, apoptosis and ER disorder. AIFM2, known as a p53 target gene, was identified as a downstream regulatory partner of ATF6, whose expression was increased in SAP. Functionally, AIFM2 could reestablish the pathological disorder in SAP tissues in the absence of ATF6. p53 expression was also increased in SAP mice, which was downregulated by ATF6 knockout. p53 knockout significantly suppressed acinar apoptosis and injury in SAP model. Mechanistically, ATF6 promoted AIFM2 transcription by binding to p53 and AIFM2 promoters.
These results reveal that ATF6/p53/AIFM2 pathway plays a critical role in acinar apoptosis during SAP progression, highlighting novel therapeutic target molecules for SAP.
Journal Article
Identification of progranulin as a novel diagnostic biomarker for early-onset sepsis in neonates
2020
Neonatal early-onset sepsis (EOS) is associated with high morbidity and mortality. Accurate early diagnosis is crucial for prompt treatment and a better clinical outcome. We aimed to identify new biomarkers for the diagnosis of EOS. A total of 152 neonates with a risk of EOS were divided into an EOS group and a non-EOS group according to the conventional diagnostic criteria. Blood samples were collected within 0–24, 24–48, and 48–72 h after birth. Serum levels of progranulin (PGRN), interleukin (IL)-33, IL-17a, IL-23, IL-6, tumor necrosis factors α (TNF-α), interferon γ (IFN-γ), granulocyte-macrophage colony-stimulating factor (GM-CSF), procalcitonin (PCT), and C-reactive protein (CRP) were determined. PGRN levels were significantly elevated in the EOS neonates compared with the levels in the non-EOS neonates (1.53 vs. 0.77 ng/ml (median), P < 0.001), with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.76 (P < 0.001). Compared with PGRN, IL-33, IL-17a, IL-23, IL-6, PCT, and CRP showed significant (AUC > 0.70) but slightly less predictive power for EOS within the same time range. Stepwise multivariate regression analysis identified PGRN, IL-33, and PCT as independent predictors of EOS. In addition, the combined measurements of PGRN, IL-33, and PCT showed significantly higher predictive power for EOS than any of the three markers alone. PGRN showed greater efficacy for predicting EOS than the traditional markers PCT and CRP as well as other potential markers tested in this study. PGRN may serve as an effective biomarker for the early diagnosis of EOS.
Journal Article
Prenatal and postnatal antibiotic exposure influences the gut microbiota of preterm infants in neonatal intensive care units
by
Yu, Jia-Lin
,
Zhu, Dan-Ping
,
Hou, Ting
in
Anti-bacterial agents
,
Biochemistry
,
Biomedical and Life Sciences
2018
Background
To explore the influences of prenatal antibiotic exposure, the intensity of prenatal and postnatal antibiotic exposure on gut microbiota of preterm infants and whether gut microbiota and drug resistant strains in the neonatal intensive care unit (NICU) over a defined period are related.
Methods
Among 28 preterm infants, there were two groups, the PAT (prenatal antibiotic therapy) group (12 cases), and the PAF (prenatal antibiotic free) group (12 cases). Fecal samples from both groups were collected on days 7 and 14. According to the time of prenatal and postnatal antibiotic exposure, cases were divided into two groups, H (high) group (11 cases) and L (low) group (11 cases), and fecal samples on day 14 were collected. Genomic DNA was extracted from the fecal samples and was subjected to high throughput 16S rRNA amplicon sequencing. Bioinformatics methods were used to analyze the sequencing results.
Results
Prenatal and postnatal antibiotic exposure exercised influence on the early establishment of intestinal microflora of preterm infants.
Bacteroidetes
decreased significantly in the PAT group (
p
< 0.05). The number of
Bifidobacterium
significantly decreased in the PAT group and H group (
p
< 0.05). The early gut microbiota of preterm infants with prenatal and postnatal antibiotic exposure was similar to resistant bacteria in NICU during the same period.
Conclusion
Prenatal and postnatal antibiotic exposure may affect the composition of early gut microbiota in preterm infants. Antibiotic-resistant bacteria in NICU may play a role in reshaping the early gut microbiota of preterm infants with prenatal and postnatal antibiotic exposure.
Journal Article