Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
43 result(s) for "Lin, Zhenxu"
Sort by:
Robust Self-Trapped Exciton Emission in Sb3+-Engineered Lead-Free Cs4SnBr6 Zero-Dimensional Perovskites
Zero-dimensional (0D) tin halide perovskites have emerged as promising luminescent materials owing to their broadband emission, high quantum yield, and negligible self-absorption. Yet, their luminescence efficiency and stability remain insufficient for practical optoelectronic applications. Here, Sb3+ dopants are introduced into Cs4SnBr6 through a water-assisted wet ball milling strategy, resulting in bright and thermally robust emission. The doped materials exhibit pronounced self-trapped exciton (STE) luminescence centered at 525 nm with a broad full width at half maximum of 110 nm, a large Stokes shift of approximately ~1.3 eV, and a photoluminescence lifetime of ~0.8 µs. Remarkably, Sb3+ incorporation boosts the photoluminescence quantum yield (PLQY) up to 64% at room temperature while simultaneously improving thermal stability. Correlated spectroscopic analyses reveal that the Sb3+-induced lattice distortion of the [SnBr6]4− octahedra strengthens electron–phonon interactions and elevates the STE binding energy, thereby stabilizing the excited states and suppressing nonradiative losses.
Boosting the Self-Trapped Exciton Emission in Cs4SnBr6 Zero-Dimensional Perovskite via Rapid Heat Treatment
Zero-dimensional (0D) tin halide perovskites feature extraordinary properties, such as broadband emission, high photoluminescence quantum yield, and self-absorption-free characteristics. The innovation of synthesis approaches for high-quality 0D tin halide perovskites has facilitated the flourishing development of perovskite-based optoelectronic devices in recent years. However, discovering an effective strategy to further enhance their emission efficiency remains a considerable challenge. Herein, we report a unique strategy employing rapid heat treatment to attain efficient self-trapped exciton (STE) emission in Cs4SnBr6 zero-dimensional perovskite. Compared to the pristine Cs4SnBr6, rapid thermal treatment (RTT) at 200 °C for a duration of 120 s results in an augmented STE emission with the photoluminescence (PL) quantum yield rising from an initial 50.1% to a substantial 64.7%. Temperature-dependent PL spectra analysis, Raman spectra, and PL decay traces reveal that the PL improvement is attributed to the appropriate electron–phonon coupling as well as the increased binding energies of STEs induced by the RTT. Our findings open up a new avenue for efficient luminescent 0D tin-halide perovskites toward the development of efficient optoelectronic devices based on 0D perovskites.
Ultrastable and Low-Threshold Two-Photon-Pumped Amplified Spontaneous Emission from CsPbBr3/Ag Hybrid Microcavity
Halide perovskite materials have garnered significant research attention due to their remarkable performance in both photoharvesting photovoltaics and photoemission applications. Recently, self-assembled CsPbBr3 superstructures (SSs) have been demonstrated to be promising lasing materials. In this study, we report the ultrastable two-photon-pumped amplified stimulated emission from a CsPbBr3 SS/Ag hybrid microcavity with a low threshold of 0.8 mJ/cm2 at room temperature. The experimental results combined with numerical simulations show that the CsPbBr3 SS exhibits a significant enhancement in the electromagnetic properties in the hybrid microcavity on Ag film, leading to the uniform spatial temperature distribution under the irradiation of a pulsed laser, which is conducive to facilitate the recrystallization process of the QDs and improve their structural integrity and optical properties. This study provides a new idea for the application of CsPbBr3/Ag hybrid microcavity in photonic devices, demonstrating its potential in efficient optical amplification and upconversion lasers.
The Effect of Nitrogen Incorporation on the Optical Properties of Si-Rich a-SiCx Films Deposited by VHF PECVD
The influence of N incorporation on the optical properties of Si-rich a-SiCx films deposited by very high-frequency plasma-enhanced chemical vapor deposition (VHF PECVD) was investigated. The increase in N content in the films was found to cause a remarkable enhancement in photoluminescence (PL). Relative to the sample without N incorporation, the sample incorporated with 33% N showed a 22-fold improvement in PL. As the N content increased, the PL band gradually blueshifted from the near-infrared to the blue region, and the optical bandgap increased from 2.3 eV to 5.0 eV. The enhancement of PL was suggested mainly from the effective passivation of N to the nonradiative recombination centers in the samples. Given the strong PL and wide bandgap of the N incorporated samples, they were used to further design an anti-counterfeiting label.
Effect of a-SiCxNy:H Encapsulation on the Stability and Photoluminescence Property of CsPbBr3 Quantum Dots
The effect of a-SiCxNy:H encapsulation layers, which are prepared using the very-high-frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) technique with SiH4, CH4, and NH3 as the precursors, on the stability and photoluminescence of CsPbBr3 quantum dots (QDs) were investigated in this study. The results show that a-SiCxNy:H encapsulation layers containing a high N content of approximately 50% cause severe PL degradation of CsPbBr3 QDs. However, by reducing the N content in the a-SiCxNy:H layer, the PL degradation of CsPbBr3 QDs can be significantly minimized. As the N content decreases from around 50% to 26%, the dominant phase in the a-SiCxNy:H layer changes from SiNx to SiCxNy. This transition preserves the inherent PL characteristics of CsPbBr3 QDs, while also providing them with long-term stability when exposed to air, high temperatures (205 °C), and UV illumination for over 600 days. This method provided an effective and practical approach to enhance the stability and PL characteristics of CsPbBr3 QD thin films, thus holding potential for future developments in optoelectronic devices.
Multifunctional Near-Infrared Luminescence Performance of Nd3+ Doped SrSnO3 Phosphor
The phosphors with persistent luminescence in the NIR (near-infrared) region and the NIR-to-NIR Stokes luminescence properties have received considerable attention owing to their inclusive application prospects in the in vivo imaging field. In this paper, Nd3+ doped SrSnO3 phosphors with remarkable NIR emission performance were prepared using a high temperature solid state reaction method; the phase structure, morphology, and luminescence properties were discussed systematically. The SrSnO3 host exhibits broadband NIR emission (800–1300 nm) with absorptions in the near ultraviolet region. Nd3+ ions emerge excellent NIR-to-NIR Stokes luminescence under 808 nm laser excitation, with maximum emission at around ~1068 nm. The concentration-dependent luminescence properties, temperature dependent emission, and the luminescence decay curves of Nd3+ in the SrSnO3 host were also studied. The Nd3+ doped SrSnO3 phosphors exhibit exceptional thermal stability; the integrated emission intensity can retain approximately 66% at 423 K compared to room temperature. Most importantly, NIR persistent luminescence also can be observed for the SrSnO3:Nd3+ samples, which is in the first and second biological windows. A possible mechanism was proposed for the persistent NIR luminescence of Nd3+ based on the thermo-luminescence spectra. Consequently, the exciting results indicate that multifunctional NIR luminescence has been successfully realized in the SrSnO3:Nd3+ phosphors.
Revealing defect-bound excitons in WS2 monolayer at room temperature by exploiting the transverse electric polarized wave supported by a Si3N4/Ag heterostructure
Two-dimensional (2D) transition metal dichalcogenide (TMDC) monolayers are promising materials for light-emitting devices due to their excellent electric and optical properties. However, defects are inevitably introduced in the fabrication of TMDC monolayers, significantly influencing their emission properties. Although photoluminescence (PL) is considered as an effective tool for investigating the defects in TMDC monolayers. However, the PL from the defect-bound excitons is revealed only at low temperatures. Here, we show that the PL from the defect-bound excitons in a WS monolayer can be effectively revealed at room temperature by exploiting the transverse electric polarized wave supported by a Si /Ag heterostructure. It is revealed that the defect-bound excitons in all possible positions of the WS monolayer can be effectively excited by the TE wave with significantly enhanced in-plane electric field localized on the surface of the Si layer. In addition, the emission from defect-bound excitons can propagate to the collection point with small attenuation. More importantly, the exciton dynamics in the WS monolayer can be modified by the Si /Ag heterostructure, allowing the simultaneous excitation of neutral excitons, charge excitons (trions), and defect-bound excitons in the WS monolayer attached on the Si /Ag heterostructure. We inspect the PL spectra obtained at different positions and find that the relative intensity of defect-bound excitons depends on the collection position. We also examine the dependences of the PL intensity and bandwidth on the excitation power for the three types of excitons. It is found that they exhibit different behaviors from those observed in the optical measurements by using the traditional excitation method. Our findings suggest a new way for exciting and studying the dynamics of multi-excitons at room temperature and indicate the potential applications of the TE wave in probing the defects in TMDC monolayers.
Tunable Emission and Color Temperature of Yb3+/Er3+/Tm3+-Tridoped Y2O3-ZnO Ceramic Nano-Phosphors Using Er3+ Concentration and Excitation Pump Power
In this study, a series of well-crystallized Yb3+/Er3+/Tm3+-tridoped Y2O3-ZnO ceramic nano-phosphors were prepared using sol–gel synthesis, and the phosphor structures were studied using X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis. The phosphors were well crystallized and exhibited a sharp-edged angular crystal structure and mesoporous structure consisting of 270 nm nano-particles. All phosphors generated blue, green, and red emission bands attributed to Tm: 1G4→3H6, Er: 2H11/2 (4S3/2)→4I15/2, and Er: 4F9/2→4I15/2 radiative transitions, respectively. Increasing in luminescent centers, weakening of lattice symmetry, and releasing of dormant rare earth ions can enhance all emissions. Er3+ can obtain energy from Tm3+ to enhance green and red emission. These colors can be tuned by optimizing the doping concentrations of the Er3+ ion. The color coordinates were adjusted by tuning both the Er3+ concentration and excitation laser pump power to shift the color coordinates and correlated color temperature. The findings of this study will broaden the potential practical applications of phosphors.
Effect of Nitrogen Doping on the Photoluminescence of Amorphous Silicon Oxycarbide Films
The effect of nitrogen doping on the photoluminescence (PL) of amorphous SiCxOy films was investigated. An increase in the content of nitrogen in the films from 1.07% to 25.6% resulted in red, orange-yellow, white, and blue switching PL. Luminescence decay measurements showed an ultrafast decay dynamic with a lifetime of ~1 ns for all the nitrogen-doped SiCxOy films. Nitrogen doping could also widen the bandgap of SiCxOy films. The microstructure and the elemental compositions of the films were studied by obtaining their Raman spectra and their X-ray photoelectron spectroscopy, respectively. The PL characteristics combined with an analysis of the chemical bonds configurations present in the films suggested that the switching PL was attributed to the change in defect luminescent centers resulting from the chemical bond reconstruction as a function of nitrogen doping. Nitrogen doping provides an alternative route for designing and fabricating tunable and efficient SiCxOy-based luminescent films for the development of Si-based optoelectronic devices.
Robust Self-Trapped Exciton Emission in Sbsup.3+-Engineered Lead-Free Cssub.4SnBrsub.6 Zero-Dimensional Perovskites
Zero-dimensional (0D) tin halide perovskites have emerged as promising luminescent materials owing to their broadband emission, high quantum yield, and negligible self-absorption. Yet, their luminescence efficiency and stability remain insufficient for practical optoelectronic applications. Here, Sb[sup.3+] dopants are introduced into Cs[sub.4]SnBr[sub.6] through a water-assisted wet ball milling strategy, resulting in bright and thermally robust emission. The doped materials exhibit pronounced self-trapped exciton (STE) luminescence centered at 525 nm with a broad full width at half maximum of 110 nm, a large Stokes shift of approximately ~1.3 eV, and a photoluminescence lifetime of ~0.8 µs. Remarkably, Sb[sup.3+] incorporation boosts the photoluminescence quantum yield (PLQY) up to 64% at room temperature while simultaneously improving thermal stability. Correlated spectroscopic analyses reveal that the Sb[sup.3+]-induced lattice distortion of the [SnBr[sub.6]][sup.4−] octahedra strengthens electron–phonon interactions and elevates the STE binding energy, thereby stabilizing the excited states and suppressing nonradiative losses.