Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12,857
result(s) for
"Lin, Zhi"
Sort by:
In situ probing electrified interfacial water structures at atomically flat surfaces
2019
Solid/liquid interfaces are ubiquitous in nature and knowledge of their atomic-level structure is essential in elucidating many phenomena in chemistry, physics, materials science and Earth science1. In electrochemistry, in particular, the detailed structure of interfacial water, such as the orientation and hydrogen-bonding network in electric double layers under bias potentials, has a significant impact on the electrochemical performances of electrode materials2–4. To elucidate the structures of electric double layers at electrochemical interfaces, we combine in situ Raman spectroscopy and ab initio molecular dynamics and distinguish two structural transitions of interfacial water at electrified Au single-crystal electrode surfaces. Towards negative potentials, the interfacial water molecules evolve from structurally ‘parallel’ to ‘one-H-down’ and then to ‘two-H-down’. Concurrently, the number of hydrogen bonds in the interfacial water also undergoes two transitions. Our findings shed light on the fundamental understanding of electric double layers and electrochemical processes at the interfaces.Interfacial water structures in electric double layers under bias potentials can impact the electrochemical performance of electrodes. Two structural transitions of interfacial water at electrified Au single-crystal electrode surfaces have now been identified.
Journal Article
Ferroptosis: past, present and future
2020
Ferroptosis is a new type of cell death that was discovered in recent years and is usually accompanied by a large amount of iron accumulation and lipid peroxidation during the cell death process; the occurrence of ferroptosis is iron-dependent. Ferroptosis-inducing factors can directly or indirectly affect glutathione peroxidase through different pathways, resulting in a decrease in antioxidant capacity and accumulation of lipid reactive oxygen species (ROS) in cells, ultimately leading to oxidative cell death. Recent studies have shown that ferroptosis is closely related to the pathophysiological processes of many diseases, such as tumors, nervous system diseases, ischemia-reperfusion injury, kidney injury, and blood diseases. How to intervene in the occurrence and development of related diseases by regulating cell ferroptosis has become a hotspot and focus of etiological research and treatment, but the functional changes and specific molecular mechanisms of ferroptosis still need to be further explored. This paper systematically summarizes the latest progress in ferroptosis research, with a focus on providing references for further understanding of its pathogenesis and for proposing new targets for the treatment of related diseases.
Journal Article
Observation of a phononic higher-order Weyl semimetal
2021
Weyl semimetals (WSMs)
1
exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band degeneracy in crystalline solids for electrons
1
and metamaterials for photons
2
and phonons
3
. Here we report a higher-order Weyl semimetal (HOWSM) in a phononic system that exhibits topologically protected boundary states in multiple dimensions. We created the physical realization of the HOWSM in a chiral phononic crystal with uniaxial screw symmetry. Using acoustic pump–probe spectroscopies, we observed coexisting chiral Fermi arc states on two-dimensional surfaces and dispersive hinge arc states on one-dimensional hinge boundaries. These topological boundary states link the projections of the Weyl points (WPs) in different dimensions and directions, and hence demonstrate the higher-order topological physics
4
–
8
in WSMs. Our study further establishes the fundamental connection between higher-order topology and Weyl physics in crystalline materials and should stimulate further work on other potential materials, such as higher-order topological nodal-line semimetals.
Symmetry is utilized to realize a phononic higher-order Weyl semimetal.
Journal Article
Second-order topology and multidimensional topological transitions in sonic crystals
2019
Topological insulators with unique edge states have revolutionized the understanding of solid-state materials. Recently, higher-order topological insulators (HOTIs), which host both gapped edge states and in-gap corner/hinge states, protected concurrently by band topology, were predicted and observed in experiments, unveiling a new horizon beyond the conventional bulk-edge correspondence. However, the control and manifestation of band topology in a hierarchy of dimensions, which is at the heart of HOTIs, have not yet been witnessed. Here, we propose theoretically and observe experimentally that tunable two-dimensional sonic crystals can be versatile systems to visualize and harness higher-order topology. In our systems, the two-dimensional acoustic bands mimic the quantum spin Hall effect, while the resultant one-dimensional helical edge states are gapped due to broken space-symmetry and carry quantized Zak phases, which then lead to zero-dimensional topological corner states. We demonstrate that topological transitions in the bulk and edges can be triggered independently by tuning the geometry of the sonic crystals. With complementary experiments and theories, our study reveals rich physics in HOTIs, opening a new route towards tunable topological metamaterials where novel applications, such as the topological transfer of acoustic energy among two-, one- and zero-dimensional modes, can be achieved.By tuning the geometry of a two-dimensional sonic crystal, its one-dimensional helical edge states become gapped and zero-dimensional topological corner states emerge. The band topology is thus manifested in a hierarchy of dimensions.
Journal Article
Experimental observation of non-Abelian topological acoustic semimetals and their phase transitions
2021
Topological phases of matter connect mathematical principles to real materials, and may shape future electronic and quantum technologies. So far, this discipline has mostly focused on single-gap topology described by topological invariants such as Chern numbers. Here, based on a tunable kagome model, we observe non-Abelian band topology and its transitions in acoustic semimetals, in which the multi-gap Hilbert space plays a key role. In non-Abelian semimetals, the topological charges of band nodes are converted through the braiding of nodes in adjacent gaps, and their behaviour cannot be captured by conventional topological band theory. Using kagome acoustic metamaterials and pump–probe measurements, we demonstrate the emergence of non-Abelian topological nodes, identify their dispersions and observe the induced multi-gap topological edge states. By controlling the geometry of the metamaterials, topological transitions are induced by the creation, annihilation, merging and splitting of band nodes. This reveals the underlying rules for the conversion and transfer of non-Abelian topological charges in multiple bandgaps. The resulting laws that govern the evolution of band nodes in non-Abelian multi-gap systems should inspire studies on multi-band topological semimetals and multi-gap topological out-of-equilibrium systems.Non-Abelian topology allows topological charges in multi-gap systems to be converted by braiding of different band nodes. Such multi-gap effects are experimentally observed in an acoustic semimetal.
Journal Article
Near-infrared-IIb emitting single-atom catalyst for imaging-guided therapy of blood-brain barrier breakdown after traumatic brain injury
2023
The blood-brain barrier breakdown, as a prominent feature after traumatic brain injury, always triggers a cascade of biochemical events like inflammatory response and free radical-mediated oxidative damage, leading to neurological dysfunction. The dynamic monitoring the status of blood-brain barrier will provide potent guidance for adopting appropriate clinical intervention. Here, we engineer a near-infrared-IIb Ag
2
Te quantum dot-based Mn single-atom catalyst for imaging-guided therapy of blood-brain barrier breakdown of mice after traumatic brain injury. The dynamic change of blood-brain barrier, including the transient cerebral hypoperfusion and cerebrovascular damage, could be resolved with high spatiotemporal resolution (150 ms and ~ 9.6 µm). Notably, the isolated single Mn atoms on the surface of Ag
2
Te exhibited excellent catalytic activity for scavenging reactive oxygen species to alleviate neuroinflammation in brains. The timely injection of Mn single-atom catalyst guided by imaging significantly promoted the reconstruction of blood-brain barrier and recovery of neurological function after traumatic brain injury.
Monitoring the status of blood-brain barrier (BBB) and inhibiting reactive oxygen species (ROS)-mediated oxidative damage are key issues in the treatment of traumatic brain injury (TBI). Here, the authors design a near-infrared-IIb emitting Mn single-atom catalyst for imaging-guided therapy to alleviate ROS mediated neuroinflammation in the brain and simultaneously obtain timely feedback of therapeutic effect, promoting the reconstruction of BBB and recovery of neurological function after TBI in mice.
Journal Article
Bulk–disclination correspondence in topological crystalline insulators
by
Li, Fei-Fei
,
Tao, Xiufeng
,
Lin, Zhi-Kang
in
639/301/119/2792/4129
,
639/624/399/1015
,
Algebraic topology
2021
Most natural and artificial materials have crystalline structures from which abundant topological phases emerge
1
–
6
. However, the bulk–edge correspondence—which has been widely used in experiments to determine the band topology from edge properties—is inadequate in discerning various topological crystalline phases
7
–
16
, leading to challenges in the experimental classification of the large family of topological crystalline materials
4
–
6
. It has been theoretically predicted that disclinations—ubiquitous crystallographic defects—can provide an effective probe of crystalline topology beyond edges
17
–
19
, but this has not yet been confirmed in experiments. Here we report an experimental demonstration of bulk–disclination correspondence, which manifests as fractional spectral charge and robust bound states at the disclinations. The fractional disclination charge originates from the symmetry-protected bulk charge patterns—a fundamental property of many topological crystalline insulators (TCIs). Furthermore, the robust bound states at disclinations emerge as a secondary, but directly observable, property of TCIs. Using reconfigurable photonic crystals as photonic TCIs with higher-order topology, we observe these hallmark features via pump–probe and near-field detection measurements. It is shown that both the fractional charge and the localized states emerge at the disclination in the TCI phase but vanish in the trivial phase. This experimental demonstration of bulk–disclination correspondence reveals a fundamental phenomenon and a paradigm for exploring topological materials.
It is experimentally shown that topological states exist at crystallographic defects in the bulk and that disclination defects trap fractional charges characteristic of topological crystalline insulators.
Journal Article
Global, regional and national epidemiology of allergic disorders in children from 1990 to 2019: findings from the Global Burden of Disease study 2019
2024
ObjectiveThis modelling study aimed to estimate the burden for allergic diseases in children during a period of 30 years.DesignPopulation-based observational study.Main outcomes and measuresThe data on the incidence, mortality and disability-adjusted life years (DALYs) for childhood allergic diseases, such as atopic dermatitis (AD) and asthma, were retrieved from the Global Burden of Disease study 2019 online database. This data set spans various groups, including different regions, ages, genders and Socio-Demographic Indices (SDI), covering the period from 1990 to 2019.ResultsIn 2019, there were approximately 81 million children with asthma and 5.6 million children with AD worldwide. The global incidence of asthma in children was 20 million. Age-standardised incidence rates showed a decrease of 4.17% for asthma, from 1075.14 (95% uncertainty intervals (UI), 724.63 to 1504.93) per 100 000 population in 1990 to 1030.33 (95% UI, 683.66 to 1449.53) in 2019. Similarly, the rates for AD decreased by 5.46%, from 594.05 (95% UI, 547.98 to 642.88) per 100 000 population in 1990 to 561.61 (95% UI, 519.03 to 608.29) in 2019. The incidence of both asthma and AD was highest in children under 5 years of age, gradually decreasing with age. Interestingly, an increase in SDI was associated with a rise in the incidence of both conditions. However, the mortality rate and DALYs for asthma showed a contrasting trend.ConclusionsOver the past three decades, there has been a worldwide increase in new asthma and AD cases, even though mortality rates have significantly declined. However, the prevalence of these allergic diseases among children varies considerably across regions, countries and age groups. This variation highlights the need for precise prevalence assessments. These assessments are vital in formulating effective strategies for prevention and treatment.
Journal Article
Phase Formation in NaH2PO4–VOSO4–NaF–H2O System and Rapid Synthesis of Na3V2O2x(PO4)2F3-2x
2024
Renewable electricity products, for example, from wind and photovoltaic energy, need large-scale and economic energy storage systems to guarantee the requirements of our daily lives. Sodium-ion batteries are considered more economical than lithium-ion batteries in this area. Na3V2(PO4)2F3, NaVPO4F, and Na3(VO)2(PO4)2F are one type of material that may be used for Na-ion batteries. In order to better understand the synthesis of these materials, the phase formation in a NaH2PO4–VOSO4–NaF–H2O system under hydrothermal conditions was studied and is reported herein. This research focused on the influences of the sodium fluoride content and hydrothermal crystallization time on phase formation and phase purity. The phase transformation between Na(VO)2(PO4)2(H2O)4 and Na3V2O2x(PO4)2F3-2x was also studied. Na3V2O2x(PO4)2F3-2x with a high degree of crystallinity can be obtained in as short as 2 h via hydrothermal synthesis using a conventional oven at 170 °C without agitation. All compounds obtained in this research were studied mainly using powder X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometry, and Fourier-transform infrared spectroscopy.
Journal Article
Observation of dynamic non-Hermitian skin effects
2024
Non-Hermitian physics has emerged as a new paradigm that profoundly changes our understanding of non-equilibrium systems, introducing novel concepts such as exceptional points, spectral topology, and non-Hermitian skin effects (NHSEs). Most existing studies focus on non-Hermitian eigenstates, whereas dynamic properties have been discussed only recently, and the dynamic NHSEs are not yet confirmed in experiments. Here, we report the experimental observation of non-Hermitian skin dynamics using tunable one-dimensional nonreciprocal double-chain mechanical systems with glide-time symmetry. Remarkably, dynamic NHSEs are observed with various behaviors in different dynamic phases, which can be understood via the generalized Brillouin zone and the related concepts. Moreover, the observed dynamic NHSEs, amplifications, bulk unidirectional wave propagation, and boundary wave trapping provide promising ways to manipulate waves in a controllable and robust way. Our findings open a new pathway toward non-Hermitian dynamics, which will fertilize the study of non-equilibrium phases of matter.
Characterizing and classifying dynamic non-Hermitian skin effect is a key challenge in nonHermitian physics. Here, authors illustrated rich non-Hermitian skin dynamics and dynamic phases in one-dimensional systems with glide-time reversal symmetry.
Journal Article