Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
54
result(s) for
"Ling, Xuefeng B."
Sort by:
Real-world risk stratification for coronary heart disease: a one-year prediction model using health information exchange data
by
Zhang, Yaqi
,
Han, Zhi
,
Mo, Yifu
in
Algorithms
,
Analysis
,
Artificial intelligence and public health
2025
Background
Coronary heart disease (CHD), the most common form of heart disease, progresses over years before culminating in serious cardiac events. Early prediction and intervention are critical to reducing CHD-related morbidity, mortality, and healthcare burden.
Objective
To develop and validate a machine learning model using statewide electronic health records (EHRs) to predict 1-year risk of CHD in the general population of Maine, enabling targeted preventive strategies.
Methods
Two population-based cohorts were constructed from the Maine Health Information Exchange (HIE): a retrospective cohort for model training and calibration (2015–2017,
N
= 1,042,124), and a prospective cohort for external validation (2016–2018,
N
= 1,040,158). EHR features included demographics, diagnoses, procedures, medications, labs, and utilization metrics. A multistage modeling pipeline—comprising statistical filtering, XGBoost-based feature selection, risk prediction, and isotonic regression calibration—was used to construct the final model. Validation included discrimination, calibration, and survival analysis.
Results
The final XGBoost model achieved strong discrimination: AUC = 0.952 (95% CI: 0.950–0.954) in the retrospective cohort and 0.888 (95% CI: 0.885–0.890) in the prospective cohort. Based on calibrated risk probabilities, the population was stratified into five risk categories: very low (92.30%,
N
= 960,021), low (6.79%,
N
= 70,676), medium (0.85%,
N
= 8,888), high (0.05%,
N
= 554), and very high (0.002%,
N
= 19). Among the very high-risk group, 11 individuals (57.89%) developed CHD within one year.
Conclusions
This statewide, HIE-based CHD risk prediction model demonstrates robust performance and real-world applicability. It enables early identification of high-risk individuals and supports population-scale precision prevention through evidence-informed, proactive care.
Journal Article
Identification of patients at risk of new onset heart failure: Utilizing a large statewide health information exchange to train and validate a risk prediction model
2021
New-onset heart failure (HF) is associated with poor prognosis and high healthcare utilization. Early identification of patients at increased risk incident-HF may allow for focused allocation of preventative care resources. Health information exchange (HIE) data span the entire spectrum of clinical care, but there are no HIE-based clinical decision support tools for diagnosis of incident-HF. We applied machine-learning methods to model the one-year risk of incident-HF from the Maine statewide-HIE.
We included subjects aged ≥ 40 years without prior HF ICD9/10 codes during a three-year period from 2015 to 2018, and incident-HF defined as assignment of two outpatient or one inpatient code in a year. A tree-boosting algorithm was used to model the probability of incident-HF in year two from data collected in year one, and then validated in year three. 5,668 of 521,347 patients (1.09%) developed incident-HF in the validation cohort. In the validation cohort, the model c-statistic was 0.824 and at a clinically predetermined risk threshold, 10% of patients identified by the model developed incident-HF and 29% of all incident-HF cases in the state of Maine were identified.
Utilizing machine learning modeling techniques on passively collected clinical HIE data, we developed and validated an incident-HF prediction tool that performs on par with other models that require proactively collected clinical data. Our algorithm could be integrated into other HIEs to leverage the EMR resources to provide individuals, systems, and payors with a risk stratification tool to allow for targeted resource allocation to reduce incident-HF disease burden on individuals and health care systems.
Journal Article
Risk Prediction of Emergency Department Revisit 30 Days Post Discharge: A Prospective Study
by
Zhao, Yifan
,
Stearns, Frank
,
Li, Zhen
in
Ambulatory care
,
Analytics
,
Biology and Life Sciences
2014
Among patients who are discharged from the Emergency Department (ED), about 3% return within 30 days. Revisits can be related to the nature of the disease, medical errors, and/or inadequate diagnoses and treatment during their initial ED visit. Identification of high-risk patient population can help device new strategies for improved ED care with reduced ED utilization.
A decision tree based model with discriminant Electronic Medical Record (EMR) features was developed and validated, estimating patient ED 30 day revisit risk. A retrospective cohort of 293,461 ED encounters from HealthInfoNet (HIN), Maine's Health Information Exchange (HIE), between January 1, 2012 and December 31, 2012, was assembled with the associated patients' demographic information and one-year clinical histories before the discharge date as the inputs. To validate, a prospective cohort of 193,886 encounters between January 1, 2013 and June 30, 2013 was constructed. The c-statistics for the retrospective and prospective predictions were 0.710 and 0.704 respectively. Clinical resource utilization, including ED use, was analyzed as a function of the ED risk score. Cluster analysis of high-risk patients identified discrete sub-populations with distinctive demographic, clinical and resource utilization patterns.
Our ED 30-day revisit model was prospectively validated on the Maine State HIN secure statewide data system. Future integration of our ED predictive analytics into the ED care work flow may lead to increased opportunities for targeted care intervention to reduce ED resource burden and overall healthcare expense, and improve outcomes.
Journal Article
Peptidomic Identification of Serum Peptides Diagnosing Preeclampsia
by
Liu, Linda Y.
,
Alev, Cantas
,
Stevenson, David K.
in
Acids
,
Adult
,
alpha 1-Antitrypsin - chemistry
2013
We sought to identify serological markers capable of diagnosing preeclampsia (PE). We performed serum peptide analysis (liquid chromatography mass spectrometry) of 62 unique samples from 31 PE patients and 31 healthy pregnant controls, with two-thirds used as a training set and the other third as a testing set. Differential serum peptide profiling identified 52 significant serum peptides, and a 19-peptide panel collectively discriminating PE in training sets (n = 21 PE, n = 21 control; specificity = 85.7% and sensitivity = 100%) and testing sets (n = 10 PE, n = 10 control; specificity = 80% and sensitivity = 100%). The panel peptides were derived from 6 different protein precursors: 13 from fibrinogen alpha (FGA), 1 from alpha-1-antitrypsin (A1AT), 1 from apolipoprotein L1 (APO-L1), 1 from inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), 2 from kininogen-1 (KNG1), and 1 from thymosin beta-4 (TMSB4). We concluded that serum peptides can accurately discriminate active PE. Measurement of a 19-peptide panel could be performed quickly and in a quantitative mass spectrometric platform available in clinical laboratories. This serum peptide panel quantification could provide clinical utility in predicting PE or differential diagnosis of PE from confounding chronic hypertension.
Journal Article
Development, Validation and Deployment of a Real Time 30 Day Hospital Readmission Risk Assessment Tool in the Maine Healthcare Information Exchange
2015
Identifying patients at risk of a 30-day readmission can help providers design interventions, and provide targeted care to improve clinical effectiveness. This study developed a risk model to predict a 30-day inpatient hospital readmission for patients in Maine, across all payers, all diseases and all demographic groups.
Our objective was to develop a model to determine the risk for inpatient hospital readmission within 30 days post discharge. All patients within the Maine Health Information Exchange (HIE) system were included. The model was retrospectively developed on inpatient encounters between January 1, 2012 to December 31, 2012 from 24 randomly chosen hospitals, and then prospectively validated on inpatient encounters from January 1, 2013 to December 31, 2013 using all HIE patients.
A risk assessment tool partitioned the entire HIE population into subgroups that corresponded to probability of hospital readmission as determined by a corresponding positive predictive value (PPV). An overall model c-statistic of 0.72 was achieved. The total 30-day readmission rates in low (score of 0-30), intermediate (score of 30-70) and high (score of 70-100) risk groupings were 8.67%, 24.10% and 74.10%, respectively. A time to event analysis revealed the higher risk groups readmitted to a hospital earlier than the lower risk groups. Six high-risk patient subgroup patterns were revealed through unsupervised clustering. Our model was successfully integrated into the statewide HIE to identify patient readmission risk upon admission and daily during hospitalization or for 30 days subsequently, providing daily risk score updates.
The risk model was validated as an effective tool for predicting 30-day readmissions for patients across all payer, disease and demographic groups within the Maine HIE. Exposing the key clinical, demographic and utilization profiles driving each patient's risk of readmission score may be useful to providers in developing individualized post discharge care plans.
Journal Article
Changes in pregnancy-related serum biomarkers early in gestation are associated with later development of preeclampsia
by
Maric, Ivana
,
Winn, Virginia D.
,
Aghaeepour, Nima
in
Biological markers
,
Biology and Life Sciences
,
Comparative analysis
2020
Placental protein expression plays a crucial role during pregnancy. We hypothesized that: (1) circulating levels of pregnancy-associated, placenta-related proteins throughout gestation reflect the temporal progression of the uncomplicated, full-term pregnancy, and can effectively estimate gestational ages (GAs); and (2) preeclampsia (PE) is associated with disruptions in these protein levels early in gestation; and can identify impending PE. We also compared gestational profiles of proteins in the human and mouse, using pregnant heme oxygenase-1 (HO-1) heterozygote (Het) mice, a mouse model reflecting PE-like symptoms.
Serum levels of placenta-related proteins-leptin (LEP), chorionic somatomammotropin hormone like 1 (CSHL1), elabela (ELA), activin A, soluble fms-like tyrosine kinase 1 (sFlt-1), and placental growth factor (PlGF)-were quantified by ELISA in blood serially collected throughout human pregnancies (20 normal subjects with 66 samples, and 20 subjects who developed PE with 61 samples). Multivariate analysis was performed to estimate the GA in normal pregnancy. Mean-squared errors of GA estimations were used to identify impending PE. The human protein profiles were then compared with those in the pregnant HO-1 Het mice.
An elastic net-based gestational dating model was developed (R2 = 0.76) and validated (R2 = 0.61) using serum levels of the 6 proteins measured at various GAs from women with normal uncomplicated pregnancies. In women who developed PE, the model was not (R2 = -0.17) associated with GA. Deviations from the model estimations were observed in women who developed PE (P = 0.01). The model developed with 5 proteins (ELA excluded) performed similarly from sera from normal human (R2 = 0.68) and WT mouse (R2 = 0.85) pregnancies. Disruptions of this model were observed in both human PE-associated (R2 = 0.27) and mouse HO-1 Het (R2 = 0.30) pregnancies. LEP outperformed sFlt-1 and PlGF in differentiating impending PE at early human and late mouse GAs.
Serum placenta-related protein profiles are temporally regulated throughout normal pregnancies and significantly disrupted in women who develop PE. LEP changes earlier than the well-established biomarkers (sFlt-1 and PlGF). There may be evidence of a causative action of HO-1 deficiency in LEP upregulation in a PE-like murine model.
Journal Article
Altered expression of the L-arginine/nitric oxide pathway in ovarian cancer: metabolic biomarkers and biological implications
2023
Motivation
Ovarian cancer (OC) is a highly lethal gynecological malignancy. Extensive research has shown that OC cells undergo significant metabolic alterations during tumorigenesis. In this study, we aim to leverage these metabolic changes as potential biomarkers for assessing ovarian cancer.
Methods
A functional module-based approach was utilized to identify key gene expression pathways that distinguish different stages of ovarian cancer (OC) within a tissue biopsy cohort. This cohort consisted of control samples (
n
= 79), stage I/II samples (
n
= 280), and stage III/IV samples (
n
= 1016). To further explore these altered molecular pathways, minimal spanning tree (MST) analysis was applied, leading to the formulation of metabolic biomarker hypotheses for OC liquid biopsy. To validate, a multiple reaction monitoring (MRM) based quantitative LCMS/MS method was developed. This method allowed for the precise quantification of targeted metabolite biomarkers using an OC blood cohort comprising control samples (
n
= 464), benign samples (
n
= 3), and OC samples (
n
= 13).
Results
Eleven functional modules were identified as significant differentiators (false discovery rate, FDR < 0.05) between normal and early-stage, or early-stage and late-stage ovarian cancer (OC) tumor tissues. MST analysis revealed that the metabolic L-arginine/nitric oxide (L-ARG/NO) pathway was reprogrammed, and the modules related to \"DNA replication\" and \"DNA repair and recombination\" served as anchor modules connecting the other nine modules. Based on this analysis, symmetric dimethylarginine (SDMA) and arginine were proposed as potential liquid biopsy biomarkers for OC assessment. Our quantitative LCMS/MS analysis on our OC blood cohort provided direct evidence supporting the use of the SDMA-to-arginine ratio as a liquid biopsy panel to distinguish between normal and OC samples, with an area under the ROC curve (AUC) of 98.3%.
Conclusion
Our comprehensive analysis of tissue genomics and blood quantitative LC/MSMS metabolic data shed light on the metabolic reprogramming underlying OC pathophysiology. These findings offer new insights into the potential diagnostic utility of the SDMA-to-arginine ratio for OC assessment. Further validation studies using adequately powered OC cohorts are warranted to fully establish the clinical effectiveness of this diagnostic test.
Journal Article
Targeted multiplex validation of CSF proteomic biomarkers: implications for differentiation of PCNSL from tumor-free controls and other brain tumors
by
Thyparambil, Sheeno
,
Zhang, Mengxue
,
Ma, Jingjing
in
1-Phosphatidylinositol 3-kinase
,
Adult
,
Aged
2024
Primary central nervous system lymphoma (PCNSL) is a rare type of non-Hodgkin's lymphoma that affects brain parenchyma, eyes, cerebrospinal fluid, and spinal cord. Diagnosing PCNSL can be challenging because imaging studies often show similar patterns as other brain tumors, and stereotactic brain lesion biopsy conformation is invasive and not always possible. This study aimed to validate a previous proteomic profiling (PMID: 32610669) of cerebrospinal fluid (CSF) and develop a CSF-based proteomic panel for accurate PCNSL diagnosis and differentiation.
CSF samples were collected from patients of 30 PCNSL, 30 other brain tumors, and 31 tumor-free/benign controls. Liquid chromatography tandem-mass spectrometry targeted proteomics analysis was used to establish CSF-based proteomic panels.
Final proteomic panels were selected and optimized to diagnose PCNSL from tumor-free controls or other brain tumor lesions with an area under the curve (AUC) of 0.873 (95%CI: 0.723-0.948) and 0.937 (95%CI: 0.807- 0.985), respectively. Pathways analysis showed diagnosis panel features were significantly enriched in pathways related to extracellular matrices-receptor interaction, focal adhesion, and PI3K-Akt signaling, while prion disease, mineral absorption and HIF-1 signaling were significantly enriched with differentiation panel features.
This study suggests an accurate clinical test panel for PCNSL diagnosis and differentiation with CSF-based proteomic signatures, which may help overcome the challenges of current diagnostic methods and improve patient outcomes.
Journal Article
Prediction of risk for early or very early preterm births using high-resolution urinary metabolomic profiling
2024
Background
Preterm birth (PTB) is a serious health problem. PTB complications is the main cause of death in infants under five years of age worldwide. The ability to accurately predict risk for PTB during early pregnancy would allow early monitoring and interventions to provide personalized care, and hence improve outcomes for the mother and infant.
Objective
This study aims to predict the risks of early preterm (< 35 weeks of gestation) or very early preterm (≤ 26 weeks of gestation) deliveries by using high-resolution maternal urinary metabolomic profiling in early pregnancy.
Design
A retrospective cohort study was conducted by two independent preterm and term cohorts using high-density weekly urine sampling. Maternal urine was collected serially at gestational weeks 8 to 24. Global metabolomics approaches were used to profile urine samples with high-resolution mass spectrometry. The significant features associated with preterm outcomes were selected by Gini Importance. Metabolite biomarker identification was performed by liquid chromatography tandem mass spectrometry (LCMS-MS). XGBoost models were developed to predict early or very early preterm delivery risk.
Setting and participants
The urine samples included 329 samples from 30 subjects at Stanford University, CA for model development, and 156 samples from 24 subjects at the University of Alabama, Birmingham, AL for validation.
Results
12 metabolites associated with PTB were selected and identified for modelling among 7,913 metabolic features in serial-collected urine samples of pregnant women. The model to predict early PTB was developed using a set of 12 metabolites that resulted in the area under the receiver operating characteristic (AUROCs) of 0.995 (95% CI: [0.992, 0.995]) and 0.964 (95% CI: [0.937, 0.964]), and sensitivities of 100% and 97.4% during development and validation testing, respectively. Using the same metabolites, the very early PTB prediction model achieved AUROCs of 0.950 (95% CI: [0.878, 0.950]) and 0.830 (95% CI: [0.687, 0.826]), and sensitivities of 95.0% and 60.0% during development and validation, respectively.
Conclusion
Models for predicting risk of early or very early preterm deliveries were developed and tested using metabolic profiling during the 1st and 2nd trimesters of pregnancy. With patient validation studies, risk prediction models may be used to identify at-risk pregnancies prompting alterations in clinical care, and to gain biological insights of preterm birth.
Journal Article
Single center blind testing of a US multi-center validated diagnostic algorithm for Kawasaki disease in Taiwan
2022
BackgroundKawasaki disease (KD) is the leading cause of acquired heart disease in children. The major challenge in KD diagnosis is that it shares clinical signs with other childhood febrile control (FC) subjects. We sought to determine if our algorithmic approach applied to a Taiwan cohort.MethodsA single center (Chang Gung Memorial Hospital in Taiwan) cohort of patients suspected with acute KD were prospectively enrolled by local KD specialists for KD analysis. Our previously single-center developed computer-based two-step algorithm was further tested by a five-center validation in US. This first blinded multi-center trial validated our approach, with sufficient sensitivity and positive predictive value, to identify most patients with KD diagnosed at centers across the US. This study involved 418 KDs and 259 FCs from the Chang Gung Memorial Hospital in Taiwan.FindingsOur diagnostic algorithm retained sensitivity (379 of 418; 90.7%), specificity (223 of 259; 86.1%), PPV (379 of 409; 92.7%), and NPV (223 of 247; 90.3%) comparable to previous US 2016 single center and US 2020 fiver center results. Only 4.7% (15 of 418) of KD and 2.3% (6 of 259) of FC patients were identified as indeterminate. The algorithm identified 18 of 50 (36%) KD patients who presented 2 or 3 principal criteria. Of 418 KD patients, 157 were infants younger than one year and 89.2% (140 of 157) were classified correctly. Of the 44 patients with KD who had coronary artery abnormalities, our diagnostic algorithm correctly identified 43 (97.7%) including all patients with dilated coronary artery but one who found to resolve in 8 weeks.InterpretationThis work demonstrates the applicability of our algorithmic approach and diagnostic portability in Taiwan.
Journal Article