Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
8
result(s) for
"Lingawi, Nura W"
Sort by:
Habits as action sequences: hierarchical action control and changes in outcome value
by
Balleine, Bernard W.
,
Lingawi, Nura W.
,
Dezfouli, Amir
in
Animals
,
Decision Making - physiology
,
Decision-Making
2014
Goal-directed action involves making high-level choices that are implemented using previously acquired action sequences to attain desired goals. Such a hierarchical schema is necessary for goal-directed actions to be scalable to real-life situations, but results in decision-making that is less flexible than when action sequences are unfolded and the decision-maker deliberates step-by-step over the outcome of each individual action. In particular, from this perspective, the offline revaluation of any outcomes that fall within action sequence boundaries will be invisible to the high-level planner resulting in decisions that are insensitive to such changes. Here, within the context of a two-stage decision-making task, we demonstrate that this property can explain the emergence of habits. Next, we show how this hierarchical account explains the insensitivity of over-trained actions to changes in outcome value. Finally, we provide new data that show that, under extended extinction conditions, habitual behaviour can revert to goal-directed control, presumably as a consequence of decomposing action sequences into single actions. This hierarchical view suggests that the development of action sequences and the insensitivity of actions to changes in outcome value are essentially two sides of the same coin, explaining why these two aspects of automatic behaviour involve a shared neural structure.
Journal Article
Sensory-Specific Satiety Dissociates General and Specific Pavlovian-Instrumental Transfer
2022
Pavlovian conditioning enables predictive stimuli to control action performance and action selection. The present experiments used sensory-specific satiety to examine the role of outcome value in these two forms of control. Experiment 1 employed a general Pavlovian-instrumental transfer design to show that a stimulus predicting a food outcome energizes performance of an instrumental action earning another food outcome. This energizing effect was removed when the stimulus-predicted outcome, or a novel outcome was devalued by sensory-specific satiety. Experiments 2 and 3 employed a specific Pavlovian-instrumental transfer design to demonstrate that a stimulus predicting a particular food outcome promotes the selection of an instrumental action earning the same, but not a different, food outcome. Remarkably, this effect was maintained when all or just one of the stimulus-predicted outcomes were devalued by sensory-specific satiety. These results indicate that satiety alone removes the expression of general PIT. By contrast, satiety or outcome-specific devaluation do not regulate the expression of specific PIT, which is insensitive to changes in outcome value. This dissociation is consistent with the view that general and specific PIT are two separate phenomena driven by distinct psychological mechanisms.
Journal Article
The role of the basolateral amygdala and infralimbic cortex in (re)learning extinction
by
Westbrook, R Fredrick
,
Laurent, Vincent
,
Holmes, Nathan M
in
Amygdala
,
Conditioned stimulus
,
Extinction behavior
2019
The basolateral amygdala complex (BLA) and infralimbic region of the prefrontal cortex (IL) play distinct roles in the extinction of Pavlovian conditioned fear in laboratory rodents. In the past decade, research in our laboratory has examined the roles of these brain regions in the re-extinction of conditioned fear: i.e., extinction of fear that is restored through re-conditioning of the conditioned stimulus (CS) or changes in the physical and temporal context of extinction training (i.e., extinction of renewed or spontaneously recovered fear). This paper reviews this research. It has revealed two major findings. First, in contrast to the acquisition of fear extinction, which usually requires neuronal activity in the BLA but not IL, the acquisition of fear re-extinction requires neuronal activity in the IL but can occur independently of neuronal activity in the BLA. Second, the role of the IL in fear extinction is determined by the training history of the CS: i.e., if the CS was novel prior to its fear conditioning (i.e., it had not been trained), the acquisition of fear extinction does not require the IL; if, however, the prior training of the CS included a series of CS-alone exposures (e.g., if the CS had been pre-exposed), the acquisition of fear extinction was facilitated by pharmacological stimulation of the IL. Together, these results were taken to imply that a memory of CS-alone exposures is stored in the IL, survives fear conditioning of the CS, and can be retrieved and strengthened during extinction or re-extinction of that CS (regardless of whether the extinction is first- or second-learned). Hence, under these circumstances, the initial extinction of fear to the CS can be facilitated by pharmacological stimulation of the IL, and re-extinction of fear to the CS can occur in the absence of a functioning BLA.
Journal Article
Basal forebrain cholinergic signaling in the basolateral amygdala promotes strength and durability of fear memories
by
Maren, Stephen
,
Leung, Beatrice K
,
Laurent, Vincent
in
Acetylcholine receptors (nicotinic)
,
Amygdala
,
Basal forebrain
2023
The basolateral amygdala (BLA) complex receives dense cholinergic projections from the nucleus basalis of Meynert (NBM) and the horizontal limb of the diagonal band of Broca (HDB). The present experiments examined whether these projections regulate the formation, extinction, and renewal of fear memories. This was achieved by employing a Pavlovian fear conditioning protocol and optogenetics in transgenic rats. Silencing NBM projections during fear conditioning weakened the fear memory produced by that conditioning and abolished its renewal after extinction. By contrast, silencing HDB projections during fear conditioning had no effect. Silencing NBM or HDB projections during extinction enhanced the loss of fear produced by extinction, but only HDB silencing prevented renewal. Next, we found that systemic blockade of nicotinic acetylcholine receptors during fear conditioning mimicked the effects produced by silencing NBM projections during fear conditioning. However, this blockade had no effect when given during extinction. These findings indicate that basal forebrain cholinergic signaling in the BLA plays a critical role in fear regulation by promoting strength and durability of fear memories. We concluded that cholinergic compounds may improve treatments for post-traumatic stress disorder by durably stripping fear memories from their fear-eliciting capacity.
Journal Article
Role Played by the Passage of Time in Reversal Learning
by
Laurent, Vincent
,
Lingawi, Nura W.
,
Goarin, Estelle H. F.
in
Animals
,
Behavior
,
Discriminative stimuli
2018
Reversal learning is thought to involve an extinction-like process that inhibits the expression of the initial learning. However, behavioral evidence for this inhibition remains difficult to interpret as various procedures have been employed to study reversal learning. Here, we used a discrimination task in rats to examine whether the inhibition produced by reversal learning is as sensitive to the passage of time as the inhibition produced by extinction. Experiment 1 showed that when tested immediately after reversal training, rats were able to use the reversed contingencies to solve the discrimination task in an outcome-specific manner. This ability to use outcome-specific information was lost when a delay was inserted between reversal training and test. However, interpretation of these data was made difficult by a potential floor effect. This concern was addressed in Experiment 2 in which it was confirmed that the passage of time impaired the ability of the rats to use the reversed contingencies in an outcome-specific manner to solve the task. Further, it revealed that the delay between initial learning and test was not responsible for this impairment. Additional work demonstrated that solving the discrimination task was unaffected by Pavlovian extinction but that the discriminative stimuli were able to block conditioning to a novel stimulus, suggesting that Pavlovian processes were likely to contribute to solving the discrimination. We therefore concluded that the expression of reversal and extinction learning do share the same sensitivity to the effect of time. However, this sensitivity was most obvious when we assessed outcome-specific information following reversal learning. This suggests that the processes involved in reversal learning are somehow distinct from those underlying extinction learning, as the latter has usually been found to leave outcome-specific information relatively intact. Thus, the present study reveals that a better understanding of the mechanisms supporting reversal training requires assessing the impact that this training exerts on the content of learning rather than performance
.
Journal Article
Habits as action sequences: hierarchical action control and changes in outcome value
by
Balleine, Bernard W.
,
Lingawi, Nura W.
,
Dezfouli, Amir
in
Behavioral neuroscience
,
Habitual behavior
,
Learning
2014
Goal-directed action involves making high-level choices that are implemented using previously acquired action sequences to attain desired goals. Such a hierarchical schema is necessary for goal-directed actions to be scalable to real-life situations, but results in decision-making that is less flexible than when action sequences are unfolded and the decision-maker deliberates step-by-step over the outcome of each individual action. In particular, from this perspective, the offline revaluation of any outcomes that fall within action sequence boundaries will be invisible to the high-level planner resulting in decisions that are insensitive to such changes. Here, within the context of a two-stage decision-making task, we demonstrate that this property can explain the emergence of habits. Next, we show how this hierarchical account explains the insensitivity of over-trained actions to changes in outcome value. Finally, we provide new data that show that, under extended extinction conditions, habitual behaviour can revert to goal-directed control, presumably as a consequence of decomposing action sequences into single actions. This hierarchical view suggests that the development of action sequences and the insensitivity of actions to changes in outcome value are essentially two sides of the same coin, explaining why these two aspects of automatic behaviour involve a shared neural structure.
Journal Article
High fat diet allows food-predictive stimuli to energize action performance in the absence of hunger, without distorting insulin signaling on accumbal cholinergic interneurons
2023
Obesity can disrupt how food-predictive stimuli control action performance and selection. These two forms of control recruit cholinergic interneurons (CIN) located in the nucleus accumbens core (NAcC) and shell (NAcS), respectively. Given that obesity is associated with insulin resistance in this region, we examined whether interfering with CIN insulin signaling disrupts how food-predictive stimuli control actions. To interfere with insulin signaling we used a high-fat diet (HFD) or genetic excision of insulin receptor (InsR) from cholinergic cells. HFD left intact the capacity of food-predictive stimuli to energize performance of an action earning food when mice were tested hungry. However, it allowed this energizing effect to persist when the mice were tested sated. This persistence was linked to NAcC CIN activity but was not associated with distorted CIN insulin signaling. Accordingly, InsR excision had no effect on how food-predicting stimuli control action performance. Next, we found that neither HFD nor InsR excision altered the capacity of food-predictive stimuli to guide action selection. Yet, this capacity was associated with changes in NAcS CIN activity. These results indicate that insulin signaling on accumbal CIN does not modulate how food-predictive stimuli control action performance and selection. However, they show that HFD allows food-predictive stimuli to energize performance of an action earning food in the absence of hunger.
The Psychological and Physiological Mechanisms of Habit Formation
by
Balleine, Bernard W.
,
Lingawi, Nura W.
,
Dezfouli, Amir
in
amygdala central nucleus
,
A–O contingency
,
goal‐directed action
2016
This chapter discusses how one can study habitual behavior empirically as well as the psychological and neural mechanisms of habit development. One way of differentiating goal‐directed from habitual actions is to determine whether the contingency between performance of the action and outcome delivery is controlling performance. Animals using the encoded A‐O contingency to control performance should decrease their performance of the degraded action, whereas other nondegraded actions should be maintained. The chapter examines the neural substrates involved in the formation of habitual behavior, a field within behavioral neuroscience, which has been of particular interest due to the implications it has for maladaptive behavior and aberrant decision‐making. Additionally, the infralimbic region of the medial prefrontal cortex (IL) and the amygdala central nucleus (CeN) have both been implicated in habit formation. Finally, the chapter discusses how habits interact with nonhabitual actions and the structure in which actions are selected.
Book Chapter