Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
26
result(s) for
"Linke, Claudia"
Sort by:
Ice nucleating particles in the Saharan Air Layer
2016
This study aims at quantifying the ice nucleation properties of desert dust in the Saharan Air Layer (SAL), the warm, dry and dust-laden layer that expands from North Africa to the Americas. By measuring close to the dust's emission source, before aging processes during the transatlantic advection potentially modify the dust properties, the study fills a gap between in situ measurements of dust ice nucleating particles (INPs) far away from the Sahara and laboratory studies of ground-collected soil. Two months of online INP concentration measurements are presented, which were part of the two CALIMA campaigns at the Izaña observatory in Tenerife, Spain (2373 m a.s.l.), in the summers of 2013 and 2014. INP concentrations were measured in the deposition and condensation mode at temperatures between 233 and 253 K with the Portable Ice Nucleation Chamber (PINC). Additional aerosol information such as bulk chemical composition, concentration of fluorescent biological particles as well as the particle size distribution was used to investigate observed variations in the INP concentration. The concentration of INPs was found to range between 0.2 std L−1 in the deposition mode and up to 2500 std L−1 in the condensation mode at 240 K. It correlates well with the abundance of aluminum, iron, magnesium and manganese (R: 0.43–0.67) and less with that of calcium, sodium or carbonate. These observations are consistent with earlier results from laboratory studies which showed a higher ice nucleation efficiency of certain feldspar and clay minerals compared to other types of mineral dust. We find that an increase of ammonium sulfate, linked to anthropogenic emissions in upwind distant anthropogenic sources, mixed with the desert dust has a small positive effect on the condensation mode INP per dust mass ratio but no effect on the deposition mode INP. Furthermore, the relative abundance of biological particles was found to be significantly higher in INPs compared to the ambient aerosol. Overall, this suggests that atmospheric aging processes in the SAL can lead to an increase in ice nucleation ability of mineral dust from the Sahara. INP concentrations predicted with two common parameterization schemes, which were derived mostly from atmospheric measurements far away from the Sahara but influenced by Asian and Saharan dust, were found to be higher based on the aerosol load than we observed in the SAL, further suggesting aging effects of INPs in the SAL.
Journal Article
Specifying the light-absorbing properties of aerosol particles in fresh snow samples, collected at the Environmental Research Station Schneefernerhaus (UFS), Zugspitze
by
Leisner, Thomas
,
Rehm, Till
,
Kiselev, Alexei
in
Absorption coefficient
,
Absorption cross sections
,
Absorption spectroscopy
2019
Atmospheric aerosol particles like mineral dust, volcanic ash and combustion particles can reduce Earth's snow and ice albedo considerably even by very small amounts of deposited particle mass. In this study, a new laboratory method is applied to measure the spectral light absorption coefficient of airborne particles that are released from fresh snow samples by an efficient nebulizing system. Three-wavelength photoacoustic absorption spectroscopy is combined with refractory black carbon (BC) mass analysis to determine the snow mass-specific and BC mass-specific absorption cross sections. Fullerene soot in water suspensions are used for the characterization of the method and for the determination of the mass-specific absorption cross section of this BC reference material. The analysis of 31 snow samples collected after fresh snowfall events at a high-altitude Alpine research station reveals a significant discrepancy between the measured snow mass-specific absorption cross section and the cross section that is expected from the BC mass data, indicating that non-BC light-absorbing particles are present in the snow. Mineral dust and brown carbon (BrC) are identified as possible candidates for the non-BC particle mass based on the wavelength dependence of the measured absorption. For one sample this result is confirmed by environmental scanning electron microscopy and by single-particle fluorescence measurements, which both indicate a high fraction of biogenic and organic particle mass in the sample.
Journal Article
The Light Absorption Heating Method for Measurement of Light Absorption by Particles Collected on Filters
by
Schmitt, Carl G.
,
Arnott, W. Patrick
,
Schnaiter, Martin
in
Absorption
,
absorption coefficient
,
Absorption cross sections
2022
A new instrument for the quantification of light absorption by particles collected on filters has been developed to address long standing environmental questions about light-absorbing particles in air, water, and on snow and ice. The Light Absorption Heating Method (LAHM) uses temperature changes when filters are exposed to light to quantify absorption. Through the use of calibration standards, the observed temperature response of unknown materials can be related to the absorption cross section of the substance collected on the filter. Here, we present a detailed description of the instrument and calibration. The results of the calibration tests using a common surrogate for black carbon, Fullerene soot, show that the instrument provides stable results even when exposed to adverse laboratory conditions, and that there is little drift in the instrument over longer periods of time. Calibration studies using Fullerene soot suspended in water, airborne propane soot, as well as atmospheric particulates show consistent results for absorption cross section when using accepted values for the mass absorption cross section of the soot and when compared to results from a 3-wavelength photoacoustic instrument. While filter sampling cannot provide the time resolution of other instrumentation, the LAHM instrument fills a niche where time averaging is reasonable and high-cost instrumentation is not available. The optimal range of absorption cross sections for LAHM is from 0.1 to 5.0 cm2 (~1.0–50.0 µg soot) for 25 mm filters and 0.4 to 20 cm2 (4.0–200.0 µg soot) for 47 mm filters, with reduced sensitivity to higher values.
Journal Article
A novel single-cavity three-wavelength photoacoustic spectrometer for atmospheric aerosol research
by
Leisner, Thomas
,
Andreae, Meinrat O.
,
Ibrahim, Inas
in
Absorption
,
Absorption coefficient
,
Absorption cross sections
2016
The spectral light-absorbing behavior of carbonaceous aerosols varies depending on the chemical composition and structure of the particles. A new single-cavity three-wavelength photoacoustic spectrometer was developed and characterized for measuring absorption coefficients at three wavelengths across the visible spectral range. In laboratory studies, several types of soot with different organic content were generated by a diffusion flame burner and were investigated for changes in mass-specific absorption cross section (MAC) values, absorption and scattering Ångström exponents (αabs and αsca), and single scattering albedo (ω). By increasing the organic carbonaceous (OC) content of the aerosol from 50 to 90 % of the total carbonaceous mass, for 660 nm nearly no change of MAC was found with increasing OC content. In contrast, for 532 nm a significant increase, and for 445 nm a strong increase of MAC was found with increasing OC content of the aerosol. Depending on the OC content, the Ångström exponents of absorption and scattering as well as the single scattering albedo increased. These laboratory results were compared to a field study at a traffic-dominated urban site, which was also influenced by residential wood combustion. For this site a daily average value of αabs(445–660) of 1.9 was found.
Journal Article
Molecular analysis of secondary organic aerosol and brown carbon from the oxidation of indole
by
Jiang, Feng
,
Siemens, Kyla
,
Leisner, Thomas
in
Absorption
,
Absorption coefficient
,
Absorptivity
2024
Indole (ind) is a nitrogen-containing heterocyclic volatile organic compound commonly emitted from animal husbandry and from different plants like maize with global emissions of 0.1 Tg yr−1. The chemical composition and optical properties of indole secondary organic aerosol (SOA) and brown carbon (BrC) are still not well understood. To address this, environmental chamber experiments were conducted to investigate the oxidation of indole at atmospherically relevant concentrations of selected oxidants (OH radicals and O3) with or without NO2. In the presence of NO2, the SOA yields decreased by more than a factor of 2, but the mass absorption coefficient at 365 nm (MAC365) of ind-SOA was 4.3 ± 0.4 m2 g−1, which was 5 times higher than that in experiments without NO2. In the presence of NO2, C8H6N2O2 (identified as 3-nitroindole) contributed 76 % to all organic compounds detected by a chemical ionization mass spectrometer, contributing ∼ 50 % of the light absorption at 365 nm (Abs365). In the absence of NO2, the dominating chromophore was C8H7O3N, contributing to 20 %–30 % of Abs365. Indole contributes substantially to the formation of secondary BrC and its potential impact on the atmospheric radiative transfer is further enhanced in the presence of NO2, as it significantly increases the specific light absorption of ind-SOA by facilitating the formation of 3-nitroindole. This work provides new insights into an important process of brown carbon formation by interaction of two pollutants, NO2 and indole, mainly emitted by anthropogenic activities.
Journal Article
The four-wavelength Photoacoustic Aerosol Absorption Spectrometer (PAAS-4 λ )
by
Servomaa, Henri
,
Kondo, Yutaka
,
Järvinen, Emma
in
Absorption
,
Absorption spectroscopy
,
Acoustics
2023
In this paper, the Photoacoustic Aerosol Absorption Spectrometer (PAAS-4λ) is introduced. PAAS-4λ was specifically developed for long-term monitoring tasks in (unattended) air quality stations. It uses four wavelengths coupled to a single acoustic resonator in a compact and robust set-up. The instrument has been thoroughly characterized and carefully calibrated in the laboratory using NO2/air mixtures and Nigrosin aerosol. It has an ultimate 1σ detection limit below 0.1 Mm−1, at a measurement precision and accuracy of 3 % and 10 %, respectively. In order to demonstrate the PAAS-4λ suitability for long-term monitoring tasks, the instrument is currently validated at the air quality monitoring station Pallas in Finland, about 140 km north of the Arctic circle. A total of 11 months of PAAS-4λ data from this deployment are presented and discussed in terms of instrument performance. Intercomparisons with the filter-based photometers of a continuous soot monitoring system (COSMOS), the Multi-Angle Absorption Photometer (MAAP), and Aethalometer (AE33) demonstrate the capabilities and value of PAAS-4λ, as well as for the validation of the widely used filter-based instruments.
Journal Article
Risk of recurrence of gastrointestinal stromal tumour after surgery: an analysis of pooled population-based cohorts
2012
The risk of recurrence of gastrointestinal stromal tumour (GIST) after surgery needs to be estimated when considering adjuvant systemic therapy. We assessed prognostic factors of patients with operable GIST, to compare widely used risk-stratification schemes and to develop a new method for risk estimation.
Population-based cohorts of patients diagnosed with operable GIST, who were not given adjuvant therapy, were identified from the literature. Data from ten series and 2560 patients were pooled. Risk of tumour recurrence was stratified using the National Institute of Health (NIH) consensus criteria, the modified consensus criteria, and the Armed Forces Institute of Pathology (AFIP) criteria. Prognostic factors were examined using proportional hazards and non-linear models. The results were validated in an independent centre-based cohort consisting of 920 patients with GIST.
Estimated 15-year recurrence-free survival (RFS) after surgery was 59·9% (95% CI 56·2–63·6); few recurrences occurred after the first 10 years of follow-up. Large tumour size, high mitosis count, non-gastric location, presence of rupture, and male sex were independent adverse prognostic factors. In receiver operating characteristics curve analysis of 10-year RFS, the NIH consensus criteria, modified consensus criteria, and AFIP criteria resulted in an area under the curve (AUC) of 0·79 (95% CI 0·76–0·81), 0·78 (0·75–0·80), and 0·82 (0·80–0·85), respectively. The modified consensus criteria identified a single high-risk group. Since tumour size and mitosis count had a non-linear association with the risk of GIST recurrence, novel prognostic contour maps were generated using non-linear modelling of tumour size and mitosis count, and taking into account tumour site and rupture. The non-linear model accurately predicted the risk of recurrence (AUC 0·88, 0·86–0·90).
The risk-stratification schemes assessed identify patients who are likely to be cured by surgery alone. Although the modified NIH classification is the best criteria to identify a single high-risk group for consideration of adjuvant therapy, the prognostic contour maps resulting from non-linear modelling are appropriate for estimation of individualised outcomes.
Academy of Finland, Cancer Society of Finland, Sigrid Juselius Foundation and Helsinki University Research Funds.
Journal Article
Stem Cells in the Dog Heart Are Self-Renewing, Clonogenic, and Multipotent and Regenerate Infarcted Myocardium, Improving Cardiac Function
by
Müller, Patrick
,
Nascimbene, Angelo
,
Urbanek, Konrad
in
Animals
,
Antigens
,
Biological Sciences
2005
The purpose of this study was to determine whether the heart in large mammals contains cardiac progenitor cells that regulate organ homeostasis and regenerate dead myocardium after infarction. We report that the dog heart possesses a cardiac stem cell pool characterized by undifferentiated cells that are self-renewing, clonogenic, and multipotent. These clonogenic cells and early committed progeny possess a hepatocyte growth factor (HGF)-c-Met and an insulin-like growth factor 1 (IGF-1)-IGF-1 receptor system that can be activated to induce their migration, proliferation, and survival. Therefore, myocardial infarction was induced in chronically instrumented dogs implanted with sonomicrometric crystals in the region of the left ventricular wall supplied by the occluded left anterior descending coronary artery. After infarction, HGF and IGF-1 were injected intramyocardially to stimulate resident cardiac progenitor cells. This intervention led to the formation of myocytes and coronary vessels within the infarct. Newly generated myocytes expressed nuclear and cytoplasmic proteins specific of cardiomyocytes: MEF2C was detected in the nucleus, whereas α-sarcomeric actin, cardiac myosin heavy chain, troponin I, and α-actinin were identified in the cytoplasm. Connexin 43 and N-cadherin were also present. Myocardial reconstitution resulted in a marked recovery of contractile performance of the infarcted heart. In conclusion, the activation of resident primitive cells in the damaged dog heart can promote a significant restoration of dead tissue, which is paralleled by a progressive improvement in cardiac function. These results suggest that strategies capable of activating the growth reserve of the myocardium may be important in cardiac repair after ischemic injury.
Journal Article
Structure–Diversity Relationships in Parasitoids of a Central European Temperate Forest
by
Linke, Roman
,
Müller, Michael Gunther
,
Jordan-Fragstein, Claudia Corina
in
Abundance
,
Arthropods
,
Canopies
2026
Parasitoids are key natural antagonists of forest insect pests and are gaining importance in integrated forest protection under increasing climate-related disturbances. This study aimed to quantify the influence of vegetation diversity and canopy structure on the abundance and diversity of the overall insect community responses to vegetation structure and to provide an ecological context. Second, detailed analyses focused on three focal parasitoid families (Braconidae, Ichneumonidae, Tachinidae), which are of particular relevance for integrated forest protection due to their central role in integrated forest protection and in pesticide-free regulation approaches for risk mitigation in forest ecosystems. Malaise traps were deployed at eight randomly selected broadleaf and coniferous sites, and insect samples from six sampling dates in summer 2024 were analyzed. The sampling period coincided with the full development of woody and vascular plants, representing the phase of highest expected activity of phytophagous insects and associated parasitoids. Vegetation surveys (Braun–Blanquet), canopy closure, and canopy cover were recorded for each site. Across all samples, five arthropod classes, 13 insect orders, and 31 hymenopteran families were identified, with pronounced site-specific differences in community composition and abundance. Our results suggest that broadleaf-dominated sites, characterized by higher plant species richness and greater structural heterogeneity, support a more diverse assemblage of phytophagous insects, thereby increasing host availability and niche diversity for parasitoids. Parasitoid communities generally showed higher diversity at broadleaf sites. Spearman correlations and multiple linear regressions revealed a strong negative relationship between canopy cover and total insect abundance ρ (Spearman’s rank correlation coefficient (Spearman ρ = −0.72, p = 0.042; p = 0.012, R2 = 0.70), R2 (coefficient of determination), whereas parasitoid diversity (Shannon index) and the relative proportion of Ichneumonidae were positively associated with canopy cover (ρ = 0.85, p = 0.008). In addition, canopy cover had a significant positive effect on overall insect diversity (Shannon index; p = 0.015, R2 = 0.63). Time-series analyses revealed a significant seasonal decline in parasitoid abundance (p < 0.001) and parasitoid diversity (p = 0.018). Time-series analyses revealed seasonal dynamics characterized by fluctuations in parasitoid abundance and diversity and a general decrease over the course of the sampling period. The findings demonstrate that structurally diverse mixed forests, particularly those with a high proportion of broadleaf trees mixed forests with heterogeneous canopy layers can enhance the diversity of specialized natural enemies, while dense canopy cover reduces overall insect abundance. These insights provide an ecological basis for silvicultural strategies that strengthen natural regulation processes within integrated forest protection.
Journal Article