Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
4
result(s) for
"Linoff, Gordon, author"
Sort by:
Data analysis using SQL and Excel
2015,2016
A practical guide to data mining using SQL and Excel Data Analysis Using SQL and Excel, 2nd Edition shows you how to leverage the two most popular tools for data query and analysis—SQL and Excel—to perform sophisticated data analysis without the need for complex and expensive data mining tools. Written by a leading expert on business data mining, this book shows you how to extract useful business information from relational databases. You'll learn the fundamental techniques before moving into the \"where\" and \"why\" of each analysis, and then learn how to design and perform these analyses using SQL and Excel. Examples include SQL and Excel code, and the appendix shows how non-standard constructs are implemented in other major databases, including Oracle and IBM DB2/UDB. The companion website includes datasets and Excel spreadsheets, and the book provides hints, warnings, and technical asides to help you every step of the way. Data Analysis Using SQL and Excel, 2nd Edition shows you how to perform a wide range of sophisticated analyses using these simple tools, sparing you the significant expense of proprietary data mining tools like SAS. -Understand core analytic techniques that work with SQL and Excel -Ensure your analytic approach gets you the results you need -Design and perform your analysis using SQL and Excel Data Analysis Using SQL and Excel, 2nd Edition shows you how to best use the tools you already know to achieve expert results.
Data mining techniques
2011
The leading introductory book on data mining, fully updated and revised!
When Berry and Linoff wrote the first edition of Data Mining Techniques in the late 1990s, data mining was just starting to move out of the lab and into the office and has since grown to become an indispensable tool of modern business. This new edition—more than 50% new and revised—is a significant update from the previous one, and shows you how to harness the newest data mining methods and techniques to solve common business problems. The duo of unparalleled authors share invaluable advice for improving response rates to direct marketing campaigns, identifying new customer segments, and estimating credit risk. In addition, they cover more advanced topics such as preparing data for analysis and creating the necessary infrastructure for data mining at your company.
* Features significant updates since the previous edition and updates you on best practices for using data mining methods and techniques for solving common business problems
* Covers a new data mining technique in every chapter along with clear, concise explanations on how to apply each technique immediately
* Touches on core data mining techniques, including decision trees, neural networks, collaborative filtering, association rules, link analysis, survival analysis, and more
* Provides best practices for performing data mining using simple tools such as Excel
Data Mining Techniques, Third Edition covers a new data mining technique with each successive chapter and then demonstrates how you can apply that technique for improved marketing, sales, and customer support to get immediate results.
Data mining techniques : for marketing, sales, and customer relationship management
2004
MICHAEL J. A. BERRY and GORDON S. LINOFF are the founders of Data Miners, Inc., a consultancy specializing in data mining. They have jointly authored some of the leading data mining titles in the field, Data Mining Techniques, Mastering Data Mining, and Mining the Web (all from Wiley). They each have more than a decade of experience applying data mining techniques to business problems in marketing and customer relationship management.