Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"Liptay, Martin"
Sort by:
H2AX promotes replication fork degradation and chemosensitivity in BRCA-deficient tumours
2024
Histone H2AX plays a key role in DNA damage signalling in the surrounding regions of DNA double-strand breaks (DSBs). In response to DNA damage, H2AX becomes phosphorylated on serine residue 139 (known as γH2AX), resulting in the recruitment of the DNA repair effectors 53BP1 and BRCA1. Here, by studying resistance to poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA1/2-deficient mammary tumours, we identify a function for γH2AX in orchestrating drug-induced replication fork degradation. Mechanistically, γH2AX-driven replication fork degradation is elicited by suppressing CtIP-mediated fork protection. As a result, H2AX loss restores replication fork stability and increases chemoresistance in BRCA1/2-deficient tumour cells without restoring homology-directed DNA repair, as highlighted by the lack of DNA damage-induced RAD51 foci. Furthermore, in the attempt to discover acquired genetic vulnerabilities, we find that ATM but not ATR inhibition overcomes PARP inhibitor (PARPi) resistance in H2AX-deficient tumours by interfering with CtIP-mediated fork protection. In summary, our results demonstrate a role for H2AX in replication fork biology in BRCA-deficient tumours and establish a function of H2AX separable from its classical role in DNA damage signalling and DSB repair.
Histone H2AX has a known role in DNA damage repair but interestingly, its loss is associated with resistance to poly(ADP-ribose) polymerase (PARP) inhibition in BRCA-deficient tumours. Here, the authors identify a role of γH2AX in the degradation of replication forks and demonstrate that H2AX loss drives PARP inhibitor resistance via increased stressed fork stability in BRCA-deficient tumours.
Journal Article
H2AX promotes replication fork degradation and chemosensitivity in BRCA-deficient tumours
2023
Histone H2AX plays a key role in DNA damage signalling in the surrounding regions of DNA double-strand breaks (DSBs)1,2. In response to DNA damage, H2AX becomes phosphorylated on serine residue 139 (known as γH2AX), resulting in the recruitment of the DNA repair effectors 53BP1 and BRCA13–6. Here, by studying resistance to poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA1/2-deficient mammary tumours7,8, we identify a novel function for γH2AX in orchestrating drug-induced replication fork degradation. Mechanistically, γH2AX-dependent replication fork degradation is elicited by the inhibition of CtIP-mediated fork protection. As a result, H2AX loss restores replication fork stability and increases chemoresistance in BRCA1/2-deficient tumour cells without restoring homology-directed DNA repair, as highlighted by the lack of DNA damage-induced RAD51 foci. Furthermore, in the attempt to discover acquired genetic vulnerabilities, we find that ATM inhibition overcomes PARP inhibitor (PARPi) resistance in H2AX-deficient tumours by interfering with CtIP-mediated fork protection of stalled forks. In summary, our results demonstrate a novel role for H2AX in replication fork biology in BRCA-deficient tumours and establish a function of H2AX separable from its classical role in DNA damage signalling and DSB repair.
MND1 and PSMC3IP control PARP inhibitor sensitivity in mitotic cells
2022
The PSMC3IP-MND1 heterodimer promotes RAD51 and DMC1-dependent D-loop formation during meiosis in yeast and mammalian organisms. For this purpose, it catalyzes the DNA strand exchange activities of the recombinases. Interestingly, in a panel of genome-scale CRISPR-Cas9 mutagenesis and interference screens in mitotic cells, we found that depletion of either PSMC3IP or MND1 caused sensitivity to clinical Poly (ADP-Ribose) Polymerase inhibitors (PARPi). A retroviral mutagenesis screen in mitotic cells also identified PSMC3IP and MND1 as genetic determinants of ionizing radiation sensitivity. The role PSMC3IP and MND1 play in preventing PARPi sensitivity in mitotic cells appears to be independent of a previously described role in alternative lengthening of telomeres (ALT). PSMC3IP or MND1 depleted cells accumulate toxic RAD51 foci in response to DNA damage, show impaired homology-directed DNA repair, and become PARPi sensitive, even in cells lacking both BRCA1 and TP53BP1. Although replication fork reversal is also affected, the epistatic relationship between PSMC3IP-MND1 and BRCA1/BRCA2 suggests that the abrogated D-loop formation is the major cause of PARPi sensitivity. This is corroborated by the fact that a PSMC3IP p.Glu201del D-loop formation mutant associated with ovarian dysgenesis fails to reverse PARPi sensitivity. These observations suggest that meiotic proteins such as MND1 and PSMC3IP could have a greater role in mitotic cells in determining the response to therapeutic DNA damage.
MDC1 counteracts restrained replication fork restart and its loss causes chemoresistance in BRCA1/2-deficient mammary tumors
2022
MDC1 is a key protein in DNA damage signaling. When DNA double-strand breaks (DSBs) occur, MDC1 localizes to sites of damage to promote the recruitment of other factors, including the 53BP1-mediated DSB repair pathway. By studying mechanisms of poly(ADP-ribose) polymerase inhibitor (PARPi) resistance in BRCA2;p53-deficient mouse mammary tumors, we identified a thus far unknown role of MDC1 in replication fork biology. MDC1 localizes at active replication forks during normal fork replication and its loss reduces fork speed. We show that MDC1 contributes to the restart of replication forks and thereby promotes sensitivity to PARPi and cisplatin. Loss of MDC1 causes MRE11-mediated resection, resulting in delayed fork restart. This improves DNA damage tolerance and causes chemoresistance in BRCA1/2-deficient cells. Hence, our results show a role for MDC1 in replication fork progression that mediates PARPi- and cisplatin-induced DNA damage, in addition to its role in DSB repair.