Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
111 result(s) for "Liu, Alex X"
Sort by:
Dynamic Resource Allocation for Load Balancing in Fog Environment
Fog computing is emerging as a powerful and popular computing paradigm to perform IoT (Internet of Things) applications, which is an extension to the cloud computing paradigm to make it possible to execute the IoT applications in the network of edge. The IoT applications could choose fog or cloud computing nodes for responding to the resource requirements, and load balancing is one of the key factors to achieve resource efficiency and avoid bottlenecks, overload, and low load. However, it is still a challenge to realize the load balance for the computing nodes in the fog environment during the execution of IoT applications. In view of this challenge, a dynamic resource allocation method, named DRAM, for load balancing in fog environment is proposed in this paper. Technically, a system framework for fog computing and the load-balance analysis for various types of computing nodes are presented first. Then, a corresponding resource allocation method in the fog environment is designed through static resource allocation and dynamic service migration to achieve the load balance for the fog computing systems. Experimental evaluation and comparison analysis are conducted to validate the efficiency and effectiveness of DRAM.
A Three-Dimensional ResNet and Transformer-Based Approach to Anomaly Detection in Multivariate Temporal–Spatial Data
Anomaly detection in multivariate time series is an important problem with applications in several domains. However, the key limitation of the approaches that have been proposed so far lies in the lack of a highly parallel model that can fuse temporal and spatial features. In this paper, we propose TDRT, a three-dimensional ResNet and transformer-based anomaly detection method. TDRT can automatically learn the multi-dimensional features of temporal–spatial data to improve the accuracy of anomaly detection. Using the TDRT method, we were able to obtain temporal–spatial correlations from multi-dimensional industrial control temporal–spatial data and quickly mine long-term dependencies. We compared the performance of five state-of-the-art algorithms on three datasets (SWaT, WADI, and BATADAL). TDRT achieves an average anomaly detection F1 score higher than 0.98 and a recall of 0.98, significantly outperforming five state-of-the-art anomaly detection methods.
Enhanced Precipitation Nowcasting via Temporal Correlation Attention Mechanism and Innovative Jump Connection Strategy
This study advances the precision and efficiency of precipitation nowcasting, particularly under extreme weather conditions. Traditional forecasting methods struggle with precision, spatial feature generalization, and recognizing long-range spatial correlations, challenges that intensify during extreme weather events. The Enhanced Temporal Correlation Jump Prediction Network (ETCJ-PredNet) introduces a novel attention mechanism that optimally leverages spatiotemporal data correlations. This model scrutinizes and encodes information from previous frames, enhancing predictions of high-intensity radar echoes. Additionally, ETCJ-PredNet addresses the issue of gradient vanishing through an innovative jump connection strategy. Comparative experiments on the Moving Modified National Institute of Standards and Technology (Moving-MNIST) and Hong Kong Observatory Dataset Number 7 (HKO-7) validate that ETCJ-PredNet outperforms existing models, particularly under extreme precipitation conditions. Detailed evaluations using Critical Success Index (CSI), Heidke Skill Score (HSS), Probability of Detection (POD), and False Alarm Ratio (FAR) across various rainfall intensities further underscore its superior predictive capabilities, especially as rainfall intensity exceeds 30 dbz,40 dbz, and 50 dbz. These results confirm ETCJ-PredNet’s robustness and utility in real-time extreme weather forecasting.
Zero-Error Coding via Classical and Quantum Channels in Sensor Networks
Today’s sensor networks need robustness, security and efficiency with a high level of assurance. Error correction is an effective communicational technique that plays a critical role in maintaining robustness in informational transmission. The general way to tackle this problem is by using forward error correction (FEC) between two communication parties. However, by applying zero-error coding one can assure information fidelity while signals are transmitted in sensor networks. In this study, we investigate zero-error coding via both classical and quantum channels, which consist of n obfuscated symbols such as Shannon’s zero-error communication. As a contrast to the standard classical zero-error coding, which has a computational complexity of O ( 2 n ) , a general approach is proposed herein to find zero-error codewords in the case of quantum channel. This method is based on a n-symbol obfuscation model and the matrix’s linear transformation, whose complexity dramatically decreases to O ( n 2 ) . According to a comparison with classical zero-error coding, the quantum zero-error capacity of the proposed method has obvious advantages over its classical counterpart, as the zero-error capacity equals the rank of the quantum coefficient matrix. In particular, the channel capacity can reach n when the rank of coefficient matrix is full in the n-symbol multilateral obfuscation quantum channel, which cannot be reached in the classical case. Considering previous methods such as low density parity check code (LDPC), our work can provide a means of error-free communication through some typical channels. Especially in the quantum case, zero-error coding can reach both a high coding efficiency and large channel capacity, which can improve the robustness of communication in sensor networks.
Multi-Access Channel Based on Quantum Detection in Wireless Optical Communication
In this paper, we propose a novel multi-user access in wireless optical communication based on the quantum detection of the coherent state. In this case, the coherent states are used as the signal carrier and a technique of quantum detection is applied to distinguish between signals from different users. To accomplish this task, two main quantum measurement methods are introduced; one is minimum error discrimination (MED), and the other is unambiguous state discrimination (USD). The theoretical derivation implies that the two methods can both distinguish between the signals from different users efficiently when the average photon number is large enough. Typically, the numerical result shows that in the two-user case, the channel capacity will approach the theoretical maximum limit when the average photon number is greater than 2.5 for MED and 5 for USD in the absence of noise. The MED gains more channel capacity than the USD at the same average photon number. However, the USD wins the error-correction scene with its free-error capability. Furthermore, the detection error probability and channel capacity for the USD with the thermal noise are examined. The result shows that increasing the signal average photon number can continue the USD’s advantage of error-free detection even if in the presence of thermal noise. In addition, compared with non-orthogonal multiple access (NOMA), the bit error rate (BER) against signal-to-noise rate (SNR) performance of USD has been improved.
Firewall design and analysis
This unique book represents the first rigorous and comprehensive study of firewall policy design and analysis. Firewalls are the most critical and widely deployed intrusion prevention systems. Designing new firewall policies and analyzing existing firewall policies have been difficult and error-prone. This book presents scientifically sound and practically useful methods for designing and analyzing firewall policies.
Modeling packet loss probability and busy time in multi-hop wireless networks
Throughput imbalances among contending flows are known to occur when any carrier sense multiple access (CSMA)-based protocol is employed in multi-hop wireless networks. These imbalances may vary from slight difference in throughput to complete starvation in which some flows are unable to acquire channel accesses. The root cause of such imbalances is the lack of coordination when CSMA medium access control (MAC) protocols are employed in multi-hop wireless networks. In this paper, we accurately predict per-flow throughput in general multi-hop wireless networks while addressing CSMA’s coordination problem. Unlike the previous work, our analytical throughput prediction model can clearly differentiate between links interfering from transmission range and carrier sensing range. Modeling of conditional packet loss probability and busy time sensed by each station is critical for per-flow throughput prediction in arbitrary networks. The calculation of both these parameters largely depends on MAC behavior due to geometrical configuration of interfering stations; we accurately compute conditional packet loss probability and busy time based on geometrical configuration of the interfering stations and predicted per-flow throughput. Our analytical results demonstrate improved accuracy, indicate throughput imbalances, and provide better understanding of CSMA-based protocol behavior in multi-hop wireless networks that can be used to design fair, scalable, and efficient MAC layer protocols.