Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
291
result(s) for
"Liu, Boyi"
Sort by:
The NLRP3 inflammasome: an emerging therapeutic target for chronic pain
by
Yin, Chengyu
,
Chen, Ruixiang
,
Liu, Boyi
in
Alzheimer's disease
,
Biomedical and Life Sciences
,
Biomedicine
2021
Chronic pain affects the life quality of the suffering patients and posts heavy problems to the health care system. Conventional medications are usually insufficient for chronic pain management and oftentimes results in many adverse effects. The NLRP3 inflammasome controls the processing of proinflammatory cytokine interleukin 1β (IL-1β) and is implicated in a variety of disease conditions. Recently, growing number of evidence suggests that NLRP3 inflammasome is dysregulated under chronic pain condition and contributes to pathogenesis of chronic pain. This review provides an up-to-date summary of the recent findings of the involvement of NLRP3 inflammasome in chronic pain and discussed the expression and regulation of NLRP3 inflammasome-related signaling components in chronic pain conditions. This review also summarized the successful therapeutic approaches that target against NLRP3 inflammasome for chronic pain treatment.
Journal Article
IL-33/ST2 signaling excites sensory neurons and mediates itch response in a mouse model of poison ivy contact allergy
2016
Poison ivy-induced allergic contact dermatitis (ACD) is the most common environmental allergic condition in the United States. Case numbers of poison ivy ACD are increasing due to growing biomass and geographical expansion of poison ivy and increasing content of the allergen, urushiol, likely attributable to rising atmospheric CO₂. Severe and treatment-resistant itch is the major complaint of affected patients. However, because of limited clinical data and poorly characterized models, the pruritic mechanisms in poison ivy ACD remain unknown. Here, we aim to identify the mechanisms of itch in a mouse model of poison ivy ACD by transcriptomics, neuronal imaging, and behavioral analysis. Using transcriptome microarray analysis, we identified IL-33 as a key cytokine up-regulated in the inflamed skin of urushiol-challenged mice. We further found that the IL-33 receptor, ST2, is expressed in small to medium-sized dorsal root ganglion (DRG) neurons, including neurons that innervate the skin. IL-33 induces Ca2+ influx into a subset of DRG neurons through neuronal ST2. Neutralizing antibodies against IL-33 or ST2 reduced scratching behavior and skin inflammation in urushiol-challenged mice. Injection of IL-33 into urushiol-challenged skin rapidly exacerbated itch-related scratching via ST2, in a histamine-independent manner. Targeted silencing of neuronal ST2 expression by intrathecal ST2 siRNA delivery significantly attenuated pruritic responses caused by urushiol-induced ACD. These results indicate that IL-33/ST2 signaling is functionally present in primary sensory neurons and contributes to pruritus in poison ivy ACD. Blocking IL-33/ST2 signaling may represent a therapeutic approach to ameliorate itch and skin inflammation related to poison ivy ACD.
Journal Article
An Outsized Contribution of Rivers to Carbon Emissions From Interconnected Urban River‐Lake Networks Within Plains
by
Zhu, Lin
,
Shi, Wenqing
,
Qin, Boqiang
in
Anthropogenic factors
,
Aquatic ecosystems
,
Aquatic environment
2024
Urban aquatic ecosystems in plains are often subject to extensive anthropogenic pollutant inputs and have prolonged times for pollutant degradation, potentially leading to diverse carbon emission patterns. This study explored carbon emission patterns and underlying mechanisms in Ge Lake and its tributaries, located in an urban area within a plain in China. The results revealed that carbon emissions from rivers were significantly higher than those from the downstream lake. Spatial interpolation analysis further revealed that CO2‐eq emissions from a 1‐km2 river area can be equivalent to those from an area as large as 86‐km2 of the downstream lake. Rivers are the gateway for the entry of organic compounds, often carrying substances that are readily biodegradable. As the river water moves slowly, these compounds accumulate and undergo degradation in rivers before they reach downstream lakes. The findings may benefit the estimates of carbon emissions in these regions with greater precision. Plain Language Summary Carbon dioxide (CO2) and methane (CH4) are the two most important greenhouse gases. Inland waters are hotspots of CO2 and CH4 emissions, greatly contributing to atmospheric levels. This study investigated the patterns of CO2 and CH4 emissions from aquatic ecosystems within plains, known for high pollutant loads and extended residence times. The results revealed that CO2 and CH4 emissions from rivers were significantly higher than those from the downstream receiving lake, exhibiting a decrease along the river flow direction. Rivers serve as the gateway for the entry of pollutants to aquatic environments, often carrying substances that are readily biodegradable. As the river water moves slowly, these compounds accumulate and undergo degradation in rivers before they reach downstream lakes, and therefore, CO2 and CH4 emissions diminish in the downstream direction. The findings add the understanding of carbon emissions in plain aquatic ecosystems, and benefit their estimates in these regions with greater precision. Key Points Carbon emissions from urban rivers were higher than the downstream receiving lake Carbon emissions exhibited a decreasing trend along the river flow direction Urban rivers warrant more attention in regional estimates of carbon emissions
Journal Article
A survey of security threats and defense on Blockchain
2021
Blockchain provides a trusted environment for storing information and propagating transactions. Owing to the distributed property and integrity, blockchain has been employed in various domains. However, lots of studies prove that the security mechanism of blockchain exposes its vulnerability especially when the blockchain suffers attacks. This work provides a systematic summary of the security threats and countermeasures on blockchain. We first review the working procedure and its implementation techniques. We then summarize basic security properties of blockchain. From the view of the blockchain’s architecture, we describe security threats of blockchain, including weak anonymity, vulnerability of P2P network, consensus mechanism, incentive mechanism and smart contract. We then describe the related attacks and summarize the current representative countermeasures which improve anonymity and robustness against security threats respectively. Finally, we also put forward future research directions on consensus, incentive mechanisms, privacy preservation and encryption algorithm to further enhance security and privacy of the blockchain-based multimedia.
Journal Article
CXCL5 activates CXCR2 in nociceptive sensory neurons to drive joint pain and inflammation in experimental gouty arthritis
2024
Gouty arthritis evokes joint pain and inflammation. Mechanisms driving gout pain and inflammation remain incompletely understood. Here we show that CXCL5 activates CXCR2 expressed on nociceptive sensory neurons to drive gout pain and inflammation. CXCL5 expression was increased in ankle joints of gout arthritis model mice, whereas CXCR2 showed expression in joint-innervating sensory neurons. CXCL5 activates CXCR2 expressed on nociceptive sensory neurons to trigger TRPA1 activation, resulting in hyperexcitability and pain. Neuronal CXCR2 coordinates with neutrophilic CXCR2 to contribute to CXCL5-induced neutrophil chemotaxis via triggering CGRP- and substance P-mediated vasodilation and plasma extravasation. Neuronal
Cxcr2
deletion ameliorates joint pain, neutrophil infiltration and gait impairment in model mice. We confirmed CXCR2 expression in human dorsal root ganglion neurons and CXCL5 level upregulation in serum from male patients with gouty arthritis. Our study demonstrates CXCL5-neuronal CXCR2-TRPA1 axis contributes to gouty arthritis pain, neutrophil influx and inflammation that expands our knowledge of immunomodulation capability of nociceptive sensory neurons.
Here, the authors demonstrate that CXCL5 expression is increased in ankle joints of gouty arthritis model mice. CXCL5-neuronal CXCR2-TRPA1 axis contributes to gouty arthritis pain, neutrophil influx and joint inflammation.
Journal Article
Disproportionality analysis of GLP-1 receptor agonists combined with metformin based on the FAERS database
2025
This study analyzed adverse events (AEs) of GLP-1RA and metformin combination therapy using FAERS data (2004–2024). A retrospective disproportionality analysis was conducted using the reporting odds ratio (ROR) on FAERS data (2004–2024), with Bayesian confidence propagation neural network (BCPNN) employed for sensitivity analysis. Adverse reactions were compared between combination therapy and monotherapy (GLP-1 RAs or metformin alone), followed by stratified analyses by gender, age, and body weight. Among 48,214 reports (57.5% female), common AEs included nausea and weight loss. Unexpected signals included kidney injury and pancreatic cancer. Monotherapy showed higher AE rates. Males reported more renal calculi and early-onset AEs (≤ 30 days), while females had delayed AEs (> 360 days). Weight loss was consistent across all demographics. The combination therapy of GLP-1 receptor agonists and metformin demonstrates superior safety over monotherapy, while revealing novel adverse events and demographic-specific risk patterns, thereby offering reliable evidence to inform clinical practice.
Journal Article
Chemokine CXCL13–CXCR5 signaling in neuroinflammation and pathogenesis of chronic pain and neurological diseases
2024
Chronic pain dramatically affects life qualities of the sufferers. It has posed a heavy burden to both patients and the health care system. However, the current treatments for chronic pain are usually insufficient and cause many unwanted side effects. Chemokine C–X–C motif ligand 13 (CXCL13), formerly recognized as a B cell chemokine, binds with the cognate receptor CXCR5, a G-protein-coupled receptor (GPCR), to participate in immune cell recruitments and immune modulations. Recent studies further demonstrated that CXCL13–CXCR5 signaling is implicated in chronic pain via promoting neuroimmune interaction and neuroinflammation in the sensory system. In addition, some latest work also pointed out the involvement of CXCL13–CXCR5 in the pathogenesis of certain neurological diseases, including ischemic stroke and amyotrophic lateral sclerosis. Therefore, we aim to outline the recent findings in regard to the involvement of CXCL13–CXCR5 signaling in chronic pain as well as certain neurological diseases, with the focus on how this chemokine signaling contributes to the pathogenesis of these neurological diseases via regulating neuroimmune interaction and neuroinflammation. Strategies that can specifically target CXCL13–CXCR5 signaling in distinct locations may provide new therapeutic options for these neurological diseases.
Journal Article
Transcriptome profiling of long noncoding RNAs and mRNAs in spinal cord of a rat model of paclitaxel-induced peripheral neuropathy identifies potential mechanisms mediating neuroinflammation and pain
by
Yin, Chengyu
,
Fang, Junfan
,
Chen, Ruixiang
in
Bioinformatics
,
Biomedical and Life Sciences
,
Biomedicine
2021
Background
Paclitaxel is a widely prescribed chemotherapy drug for treating solid tumors. However, paclitaxel-induced peripheral neuropathy (PIPN) is a common adverse effect during paclitaxel treatment, which results in sensory abnormalities and neuropathic pain among patients. Unfortunately, the mechanisms underlying PIPN still remain poorly understood. Long noncoding RNAs (lncRNAs) are novel and promising targets for chronic pain treatment, but their involvement in PIPN still remains unexplored.
Methods
We established a rat PIPN model by repetitive paclitaxel application. Immunostaining, RNA sequencing (RNA-Seq) and bioinformatics analysis were performed to study glia cell activation and explore lncRNA/mRNA expression profiles in spinal cord dorsal horn (SCDH) of PIPN model rats. qPCR and protein assay were used for further validation.
Results
PIPN model rats developed long-lasting mechanical and thermal pain hypersensitivities in hind paws, accompanied with astrocyte and microglia activation in SCDH. RNA-Seq identified a total of 814 differentially expressed mRNAs (DEmRNA) (including 467 upregulated and 347 downregulated) and 412 DElncRNAs (including 145 upregulated and 267 downregulated) in SCDH of PIPN model rats
vs
. control rats. Functional analysis of DEmRNAs and DElncRNAs identified that the most significantly enriched pathways include immune/inflammatory responses and neurotrophin signaling pathways, which are all important mechanisms mediating neuroinflammation, central sensitization, and chronic pain. We further compared our dataset with other published datasets of neuropathic pain and identified a core set of immune response-related genes extensively involved in PIPN and other neuropathic pain conditions. Lastly, a competing RNA network analysis of DElncRNAs and DEmRNAs was performed to identify potential regulatory networks of lncRNAs on mRNA through miRNA sponging.
Conclusions
Our study provided the transcriptome profiling of DElncRNAs and DEmRNAs and uncovered immune and inflammatory responses were predominant biological events in SCDH of the rat PIPN model. Thus, our study may help to identify promising genes or signaling pathways for PIPN therapeutics.
Journal Article
Expression profiling of spinal cord dorsal horn in a rat model of complex regional pain syndrome type-I uncovers potential mechanisms mediating pain and neuroinflammation responses
2020
Background
Complex regional pain syndrome type-I (CRPS-I) is a progressive and devastating pain condition. The mechanisms of CRPS-I still remain poorly understood. We aim to explore expression profiles of genes relevant to pain and neuroinflammation mechanisms involved in CRPS-I.
Methods
The rat chronic post-ischemic pain (CPIP) model that mimics human CRPS-I was established. RNA-sequencing (RNA-Seq), qPCR, Western blot, immunostaining, and pharmacological studies were used for profiling gene changes in ipsilateral spinal cord dorsal horn (SCDH) of CPIP model rat and further validation.
Results
CPIP rats developed persistent mechanical allodynia in bilateral hind paws, accompanied with obvious glial activation in SCDH. RNA-Seq identified a total of 435 differentially expressed genes (DEGs) in ipsilateral SCDH of CPIP rats. qPCR confirmed the expression of several representative genes. Functional analysis of DEGs identified that the most significantly enriched biological processes of upregulated genes include inflammatory and innate immune response. We further identified NLRP3 inflammasome expression to be significantly upregulated in SCDH of CPIP rats. Pharmacological blocking NLRP3 inflammasome reduced IL-1β overproduction, glial activation in SCDH as well as mechanical allodynia of CPIP rats.
Conclusion
Our study revealed that immune and inflammatory responses are predominant biological events in SCDH of CPIP rats. We further identified NLRP3 inflammasome in SCDH as a key contributor to the pain and inflammation responses in CPIP rats. Thus, our study provided putative novel targets that may help to develop effective therapeutics against CRPS-I.
Journal Article
CXCL13 contributes to chronic pain of a mouse model of CRPS-I via CXCR5-mediated NF-κB activation and pro-inflammatory cytokine production in spinal cord dorsal horn
2023
Background
Complex regional pain syndrome type-I (CRPS-I) causes excruciating pain that affect patients’ life quality. However, the mechanisms underlying CRPS-I are incompletely understood, which hampers the development of target specific therapeutics.
Methods
The mouse chronic post-ischemic pain (CPIP) model was established to mimic CRPS-I. qPCR, Western blot, immunostaining, behavioral assay and pharmacological methods were used to study mechanisms underlying neuroinflammation and chronic pain in spinal cord dorsal horn (SCDH) of CPIP mice.
Results
CPIP mice developed robust and long-lasting mechanical allodynia in bilateral hindpaws. The expression of inflammatory chemokine CXCL13 and its receptor CXCR5 was significantly upregulated in ipsilateral SCDH of CPIP mice. Immunostaining revealed CXCL13 and CXCR5 was predominantly expressed in spinal neurons. Neutralization of spinal CXCL13 or genetic deletion of
Cxcr5
(
Cxcr5
−/−
) significantly reduced mechanical allodynia, as well as spinal glial cell overactivation and c-Fos activation in SCDH of CPIP mice. Mechanical pain causes affective disorder in CPIP mice, which was attenuated in
Cxcr5
−/−
mice. Phosphorylated STAT3 co-expressed with CXCL13 in SCDH neurons and contributed to CXCL13 upregulation and mechanical allodynia in CPIP mice. CXCR5 coupled with NF-κB signaling in SCDH neurons to trigger pro-inflammatory cytokine gene
Il6
upregulation, contributing to mechanical allodynia. Intrathecal CXCL13 injection produced mechanical allodynia via CXCR5-dependent NF-κB activation. Specific overexpression of CXCL13 in SCDH neurons is sufficient to induce persistent mechanical allodynia in naïve mice.
Conclusions
These results demonstrated a previously unidentified role of CXCL13/CXCR5 signaling in mediating spinal neuroinflammation and mechanical pain in an animal model of CRPS-I. Our work suggests that targeting CXCL13/CXCR5 pathway may lead to novel therapeutic approaches for CRPS-I.
Journal Article