Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
486 result(s) for "Liu, Juncheng"
Sort by:
Gut microbiota-bile acid crosstalk regulates murine lipid metabolism via the intestinal FXR-FGF19 axis in diet-induced humanized dyslipidemia
Background Diet-induced dyslipidemia is linked to the gut microbiota, but the causality of microbiota-host interaction affecting lipid metabolism remains controversial. Here, the humanized dyslipidemia mice model was successfully built by using fecal microbiota transplantation from dyslipidemic donors (FMT-dd) to study the causal role of gut microbiota in diet-induced dyslipidemia. Results We demonstrated that FMT-dd reshaped the gut microbiota of mice by increasing Faecalibaculum and Ruminococcaceae UCG-010 , which then elevated serum cholicacid (CA), chenodeoxycholic acid (CDCA), and deoxycholic acid (DCA), reduced bile acid synthesis and increased cholesterol accumulation via the hepatic farnesoid X receptor-small heterodimer partner (FXR-SHP) axis. Nevertheless, high-fat diet led to decreased Muribaculum in the humanized dyslipidemia mice induced by FMT-dd, which resulted in reduced intestinal hyodeoxycholic acid (HDCA), raised bile acid synthesis and increased lipid absorption via the intestinal farnesoid X receptor-fibroblast growth factor 19 (FXR-FGF19) axis. Conclusions Our studies implicated that intestinal FXR is responsible for the regulation of lipid metabolism in diet-induced dyslipidemia mediated by gut microbiota-bile acid crosstalk. 27dVNVWG4xVHYhT6VNwbbK Video Abstract
An experimental study on the identification of the root bolts' state of wind turbine blades using blade sensors
Bolt looseness may occur on wind turbine (WT) blades exposed to operational and environmental variability conditions, which sometimes can cause catastrophic consequences. Therefore, it is necessary to monitor the loosening state of WT blade root bolts. In order to solve this problem, this paper proposes a method to monitor the looseness of blade root bolts using the sensors installed on the WT blade. An experimental platform was first built by installing acceleration and strain sensors for monitoring bolt looseness. Through the physical experiment of blade root bolts' looseness, the response data of blade sensors is then obtained under different bolt looseness numbers and degrees. Afterwards, the sensor signal of the blade root bolts is analyzed in time domain, frequency domain, and time‐frequency domain, and the sensitivity features of various signals are extracted. So the eigenvalue category as the input of the state discrimination model was determined. The LightGBM (light gradient boosting machine) classification algorithm was applied to identify different bolt looseness states for the multi‐domain features. The impact of different combinations of sensor categories and quantities as the data source on the identification results is discussed, and a reference for the selection of sensors is provided. The proposed method can discriminate four bolt states at an accuracy of around 99.8% using 5‐fold cross‐validation.
Self-Assembled TiN-Metal Nanocomposites Integrated on Flexible Mica Substrates towards Flexible Devices
The integration of nanocomposite thin films with combined multifunctionalities on flexible substrates is desired for flexible device design and applications. For example, combined plasmonic and magnetic properties could lead to unique optical switchable magnetic devices and sensors. In this work, a multiphase TiN-Au-Ni nanocomposite system with core–shell-like Au-Ni nanopillars embedded in a TiN matrix has been demonstrated on flexible mica substrates. The three-phase nanocomposite film has been compared with its single metal nanocomposite counterparts, i.e., TiN-Au and TiN-Ni. Magnetic measurement results suggest that both TiN-Au-Ni/mica and TiN-Ni/mica present room-temperature ferromagnetic property. Tunable plasmonic property has been achieved by varying the metallic component of the nanocomposite films. The cyclic bending test was performed to verify the property reliability of the flexible nanocomposite thin films upon bending. This work opens a new path for integrating complex nitride-based nanocomposite designs on mica towards multifunctional flexible nanodevice applications.
High-Power Coupled Wideband Low-Frequency Antenna Design for Enhanced Long-Range Loran-C Timing Synchronization
Precise timing synchronization remains a fundamental requirement for modern navigation and communication systems, where the miniaturization of Loran-C infrastructure presents both technical challenges and practical significance. Conventional miniaturized loop antennas cannot simultaneously meet the requirements of the Loran-C signal for both radiation intensity and bandwidth due to inherent quality factor (Q) limitations. A sub-cubic-meter impedance matching (IM) antenna is proposed, featuring a −20 dB bandwidth of 18 kHz and over 7-fold radiation enhancement. The proposed design leverages a planar-transformer-based impedance matching network to enable efficient 100 kHz operation in a compact form factor, while a resonant coil structure is adopted at the receiver side to enhance the system’s sensitivity. The miniaturized Loran-C timing system incorporating the IM antenna achieves an extended decoding range of >100 m with merely 100 W input power, exceeding conventional loop antennas limited to 30 m operation. This design successfully achieves overall miniaturization of the Loran-C timing system while breaking through the current transmission distance limitations of compact antennas, extending the effective transmission range to the hundred-meter scale. The design provides a case for developing compact yet high-performance Loran-C systems.
First report of bicolour FISH of Berberis diaphana and B. soulieana reveals interspecific differences and co-localization of (AGGGTTT)3 and rDNA 5S in B. diaphana
Background Berberis consists of approximately 500 species and is the largest genus in Berberidaceae. Most Berberis species lack cytological data, and bicolour fluorescence in situ hybridization (FISH) has never been performed on Berberis . In this work, a karyotype of Berberis diaphana , an alpine Berberis species obtained from an altitude of 3600 m in Wolong National Nature Reserve, China, was analysed and compared with Berberis soulieana Schneid. via FISH using oligonucleotide telomere probes for (AGGGTTT) 3 and 5S rDNA (41 bp) for the first time. Results Berberis diaphana belonged to cytotype 2A and had the karyotype formula 2n = 2x = 28 = 26 m + 2 sm (2SAT). The mitotic metaphase chromosome lengths ranged from 1.82 ± 0.04 μm to 2.75 ± 0.00 μm. Clear (AGGGTTT) 3 signals were detected at two telomeres in every chromosome and were co–localized with 5S rDNA at the terminal regions of the long arms in the 6 th pair of chromosomes. One pair of (AGGGTTT) 3 sites was localized in the satellites of the 7 th pair of chromosomes, which are the only submetacentric chromosomes in this species. Totally 28 chromosomes with one pair of satellited chromosomes were observed in B. soulieana . This species had four 5S rDNA signals with two weak signals at the end of long arms in the 5 th pair of chromosomes and another two strong signals detected in the interstitial region close to the end of short arms in the 6 th pair of chromosomes. Each large signal consisted of two smaller signals with secondary constrictions around them. Conclusions FISH physical mapping of B. diaphana suggested that (AGGGTTT) 3 and rDNA 5S co-localize at the 6 th pair of chromosomes. The density, location and number difference of 5S rDNA loci indicated structural differences among the chromosomes between B. diaphana and B. soulieana. Our results provide information that may contribute to future studies on the physical assembly of the Berberis genome and the evolution of rDNA and telomere FISH patterns in Berberis .
Prediction of Jacking Force for Construction of Long-Distance Rectangular Utility Tunnel Using Differential Evolution–Bidirectional Gated Re-Current Unit–Attention Model
Most of the current machine learning algorithms are applied to predict the jacking force required in micro-tunneling; in contrast, few studies about long-distance, large-section jacking projects have been reported in the literature. In this study, an intelligent framework, consisting of a differential evolution (DE), a bidirectional gated re-current unit (BiGRU), and attention mechanisms was developed to automatically identify the optimal hyperparameters and assign weights to the information features, as well as capture the bidirectional temporal features of sequential data. Based on field data from a pipe jacking project crossing underneath a canal, the model’s performance was compared with those of four conventional models (RNN, GRU, BiGRU, and DE–BiGRU). The results indicated that the DE–BiGRU–attention model performed best among these models. Then, the generalization performance of the proposed model in predicting jacking forces was evaluated with the aid of a similar case at the site. It was found that fine-tuning parameters for specific projects is essential for improving the model’s generalization performance. More generally, the proposed prediction model was found to be practically useful to professionals and engineers in making real-time adjustments to jacking parameters, predicting jacking force, and carrying out performance evaluations.
Quantitative label-free proteomic analysis of excretory-secretory proteins in different developmental stages of Trichinella spiralis
Trichinella spiralis ( T. spiralis ) is a zoonotic parasitic nematode with a unique life cycle, as all developmental stages are contained within a single host. Excretory-secretory (ES) proteins are the main targets of the interactions between T. spiralis and the host at different stages of development and are essential for parasite survival. However, the ES protein profiles of T. spiralis at different developmental stages have not been characterized. The proteomes of ES proteins from different developmental stages, namely, muscle larvae (ML), intestinal infective larvae (IIL), preadult (PA) 6 h, PA 30 h, adult (Ad) 3 days post-infection (dpi) and Ad 6 dpi, were characterized via label-free mass spectrometry analysis in combination with bioinformatics. A total of 1217 proteins were identified from 9341 unique peptides in all developmental stages, 590 of which were quantified and differentially expressed. GO classification and KEGG pathway analysis revealed that these proteins were important for the growth of the larvae and involved in energy metabolism. Moreover, the heat shock cognate 71 kDa protein was the centre of protein interactions at different developmental stages. The results of this study provide comprehensive proteomic data on ES proteins and reveal that these ES proteins were differentially expressed at different developmental stages. Differential proteins are associated with parasite survival and the host immune response and may be potential early diagnostic antigen or antiparasitic vaccine candidates.
Synthesis and Properties of Polyimide Silica Nanocomposite Film with High Transparent and Radiation Resistance
In order to prepare flexible glass cover sheet materials suitable for space solar cells, fluorinated diamine 2,2’-bistrifluoromethyl benzidine (TFDB) and fluorinated dianhydride 4,4’ (hexafluoroisopropyl) diphthalic dianhydride (6FDA) as the monomer, polyimide (PI)/SiO2 composite film was synthesized by in situ polymerization, and the influence of coupling agent and SiO2 nanoparticle content on the film structure and properties was studied. The results show that PI synthesized from fluorine-containing monomers has better light transmittance, and the highest transmittance can reach 91.4%. The average visible light transmittance of the composite film decreases with the increase of SiO2 content, and the transmittance of the film decreases less in the high-wavelength region and greatly decreases in the low-wavelength region. The tensile strength and elastic modulus of PI/SiO2 composite film increase with the increase of SiO2 content, first increase and then decrease, reaching the maximum when the content is 10%; while the elongation at break of the composite film gradually increases with the increase of SiO2 content reduce. The thermal stability of PI/SiO2 composite film increases with the increase of SiO2 content. The doping of nano-SiO2 significantly suppresses the influence of irradiation on the mechanical properties of the film.
Gestational diabetes exacerbates intrauterine microbial exposure induced intestinal microbiota change in offspring contributing to increased immune response
Background maternal health during pregnancy can affect the intestinal microbial community of offspring, but currently the impact of intrauterine environmental changes resulting from gestational diabetes mellitus (GDM) on the microbiota of offspring as well as its interaction with the immune system remains unclear. Aims to explore the impact of intrauterine microbial exposure during pregnancy of gestational diabetes mellitus on the development of neonate’s intestinal microbiota and activation of immune responses. Methods Levels of lipopolysaccharides in cord blood from GDM and expression of microbial recognition-related proteins in the placenta were measured. To evaluate embryonic intestinal colonization, pregnant mice with GDM were administered with labeled Escherichia coli or Lactobacillus . The intestinal colonization of pups was analyzed through 16S rRNA gene sequencing and labeled microbial culture. Additionally, memory T lymphocyte and dendritic cell co-culture experiments were conducted to elucidate the immune memory of intestinal microbes during the embryonic stages. Result Gestational diabetes mellitus led to elevated umbilical cord blood LPS level and increased GFP labeled Escherichia coli in the offspring’s intestine after gestational microbial exposure. The mouse model of GDM exhibited increased immune markers including TLR4, TLR5, IL-22 and IL-23 in the placenta and a recall response from memory T cells in offspring’s intestines, with similar observations found in human experiments. Furthermore, reduced intestinal microbiome diversity and an increased ratio of Firmicutes/Bacteroidetes was found in GDM progeny, with the stability of bacterial colonization been interfered. Conclusions Our investigation has revealed a noteworthy correlation between gestational diabetes and intrauterine microbial exposure, as well as alterations in the neonatal microbiota and activation of immune responses. These findings highlight the gestational diabetes’s role on offspring’s gut microbiota and immune system interactions with early-life pathogen exposure.
The Effect of Electric-Thermal-Vibration Stress Coupling on the Reliability of Sn-Ag-Cu Solder Joints
The damage of the package structure, caused by the multi-stress coupling of various environmental factors, can lead to the failure of the electronic device. Therefore, through the finite element method, the reliability analysis of three kinds of lead-free Sn-Ag-Cu solders (SAC105, SAC305, SAC405) in ball grid array (BGA) packaging was conducted under the conditions of thermoelectric coupling and random vibration, respectively. The results indicate that, according to the modified Coffin–Mason model, SAC405 has the largest plastic strain range and the shortest fatigue lifetime under thermoelectric coupling. As a counterpart, SAC105 has the smallest plastic strain range and the longest lifetime. However, under random vibration load, by addressing the Miner linear damage rule, the empirical formula of Manson high cycle fatigue and Steinberg’s three band theory, the fatigue lifetime of SAC405 is the longest, which is twice as much as SAC105 and SAC305. Furthermore, based on the linear damage superposition approach, the fatigue lifetime is predicted as SAC305 < SAC105 < SAC405 under multi-stress coupling of electric, thermal and random vibration conditions. These results will provide theoretical support for improving the application reliability of packaging in complex environments.