Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
40 result(s) for "Liu, Ko-Hung"
Sort by:
Circulating endotoxin is correlated with fatty acid binding protein 2 and leukocyte nuclear factor-κB activation in menopausal women
Circulating endotoxin is mainly derived from gut microbiome and is frequently increased after meals. However, the interplay between endotoxemia and innate immune cells in systemic inflammation remains unclear. The aim was to investigate the role of endotoxemia in systemic inflammation, focusing on the immune responses in innate immune cells. Menopausal women ( n  = 174) were divided into 2 groups. Blood samples were collected from the participants of group 1 ( n  = 80), who fasted for at least 8 h, to analyze the correlation between endotoxin levels, fatty acid-binding protein 2 (FABP2), markers of systemic inflammation, and nuclear factor-κB (NF-κB) activation in leukocytes. The participants of group 2 ( n  = 94) fasted for at least 8 h and received oral glucose tolerance test (OGTT). Their fasting and post-OGTT blood samples were also collected to evaluate the impact of postprandial endotoxemia on the expression of NF-κB target genes in leucocytes. The study revealed that circulating endotoxin level was significantly associated with FABP2 level and NF-κB activation in leukocytes after fasting and within a 2 h-OGTT period. Variation in endotoxin levels (about 1 EU/ml) was sufficient to modulate NF-κB activation in leukocytes. These results provide clues for understanding the effects of postprandial endotoxemia on immune cell activation and inflammation induction. Our findings suggest that an increase in intestinal barrier permeability might be linked to endotoxemia-induced systemic inflammation in menopausal women.
TNFα-mediated necroptosis in brain endothelial cells as a potential mechanism of increased seizure susceptibility in mice following systemic inflammation
Background Systemic inflammation is a potent contributor to increased seizure susceptibility. However, information regarding the effects of systemic inflammation on cerebral vascular integrity that influence neuron excitability is scarce. Necroptosis is closely associated with inflammation in various neurological diseases. In this study, necroptosis was hypothesized to be involved in the mechanism underlying sepsis-associated neuronal excitability in the cerebrovascular components (e.g., endothelia cells). Methods Lipopolysaccharide (LPS) was used to induce systemic inflammation. Kainic acid intraperitoneal injection was used to measure the susceptibility of the mice to seizure. The pharmacological inhibitors C87 and GSK872 were used to block the signaling of TNFα receptors and necroptosis. In order to determine the features of the sepsis-associated response in the cerebral vasculature and CNS, brain tissues of mice were obtained for assays of the necroptosis-related protein expression, and for immunofluorescence staining to identify morphological changes in the endothelia and glia. In addition, microdialysis assay was used to assess the changes in extracellular potassium and glutamate levels in the brain. Results Some noteworthy findings, such as increased seizure susceptibility and brain endothelial necroptosis, Kir4.1 dysfunction, and microglia activation were observed in mice following LPS injection. C87 treatment, a TNFα receptor inhibitor, showed considerable attenuation of increased kainic acid-induced seizure susceptibility, endothelial cell necroptosis, microglia activation and restoration of Kir4.1 protein expression in LPS-treated mice. Treatment with GSK872, a RIP3 inhibitor, such as C87, showed similar effects on these changes following LPS injection. Conclusions The findings of this study showed that TNFα-mediated necroptosis induced cerebrovascular endothelial damage, neuroinflammation and astrocyte Kir4.1 dysregulation, which may coalesce to contribute to the increased seizure susceptibility in LPS-treated mice. Pharmacologic inhibition targeting this necroptosis pathway may provide a promising therapeutic approach to the reduction of sepsis-associated brain endothelia cell injury, astrocyte ion channel dysfunction, and subsequent neuronal excitability.
Relationships between depression and anxiety symptoms and adipocyte-derived proteins in postmenopausal women
Studies on the association between adiponectin and leptin and anxiety and depression among postmenopausal women are limited. Therefore, the present study specifically evaluates the mutual relationships between adiponectin and leptin and anxiety and depression in postmenopausal women. In this cross-sectional study, a total of 190 women aged 40-65 years were enrolled. Depression symptoms were assessed using the Center for Epidemiologic Studies Depression Scale (CES-D), and anxiety symptoms were evaluated using the Hamilton Anxiety Rating Scale (HAM-A). Fasting specimens were collected to measure sex hormone, glucose, insulin, and adipokine levels. Multiple linear regression analysis was performed to evaluate the associations between depression and anxiety and adipocyte-derived hormones. The study was performed in a hospital medical center. Among 190 enrolled postmenopausal women, Spearman's rank correlation analysis revealed significant correlations between CES-D and HAM-A (r = 0.715, P < 0.0001), between CES-D and adiponectin (p = 0.009) and leptin (p = 0.015), and between HAM-A and adiponectin (p = 0.01) and leptin (p = 0.001). The subjects with CES-D ≥ 16 and with HAM-A ≥ 18 had higher adiponectin levels than those with CES-D < 16 and HAM-A < 18, respectively. After adjusting for age, body mass index, exercise, alanine amino transferase and parameters of lipid profiles, Log adiponectin levels were found to be significantly associated with both CES-D and HAM-A, and Log leptin levels were only significantly associated with HAM-A. The data show that adiponectin and leptin levels are significantly associated with depression and anxiety symptoms. These results suggest that higher adiponectin and lower leptin levels may serve as potential markers related to anxiety and mood in postmenopausal women. More future research that is designed to deal with the important confounders (e.g., population heterogeneity) is needed to investigate comprehensively on these associations.
Peptide-mediated delivery of donor mitochondria improves mitochondrial function and cell viability in human cybrid cells with the MELAS A3243G mutation
The cell penetrating peptide, Pep-1, has been shown to facilitate cellular uptake of foreign mitochondria but further research is required to evaluate the use of Pep-1-mediated mitochondrial delivery (PMD) in treating mitochondrial defects. Presently, we sought to determine whether mitochondrial transplantation rescue mitochondrial function in a cybrid cell model of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) disease. Following PMD, recipient cells had internalized donor mitochondria after 1 h, and expressed higher levels of normal mitochondrial DNA, particularly at the end of the treatment and 11 days later. After 4 days, mitochondrial respiratory function had recovered and biogenesis was evident in the Pep-1 and PMD groups, compared to the untreated MELAS group. However, only PMD was able to reverse the fusion-to-fission ratio of mitochondrial morphology, and mitochondria shaping proteins resembled the normal pattern seen in the control group. Cell survival following hydrogen peroxide-induced oxidative stress was also improved in the PMD group. Finally, we observed that PMD partially normalized cytokine expression, including that of interleukin (IL)-7, granulocyte macrophage–colony-stimulating factor (GM-CSF), and vascular endothelial growth factor (VEGF), in the MELAS cells. Presently, our data further confirm the protective effects of PMD as well in MELAS disease.
The relationship between hot flashes and fatty acid binding protein 2 in postmenopausal women
Hot flashes, the most bothering symptom of menopause, are linked to a metabolic inflammation. Due to estrogen deficiency in menopause, dysbiosis is observed. The intestinal barrier affects the interaction of microbiota in healthy or unhealthy individuals. This study investigates the relationship between hot flashes and gut permeability in postmenopausal women. In this cross-sectional study, we divided 289 women, aged 40-65 years, into four groups based on their hot-flash severity: HF.sub.0 : never experienced hot flashes; HF.sub.m : mild hot flashes; HF.sub.M : moderate hot flashes; HF.sub.S : severe hot flashes. The measured variables included the clinical parameters; hot flashes experience; fasting plasma levels of zonulin, fatty acid binding protein 2 (FABP2), endotoxin, and cytokines/chemokines. We used multiple linear regression analysis to evaluate the relationship between hot flashes and the previously mentioned gut barrier proteins. The study was performed in a hospital medical center. The hot flashes had a positive tendency toward increased levels of circulating FABP2 (P-trend = 0.001), endotoxin (P-trend = 0.031), high-sensitivity C-reactive protein (hs-CRP) (P-trend = 0.033), tumor necrosis factor alpha (TNF-[alpha]) (P-trend = 0.017), and interferon-inducible protein-10 (IP10) (P-trend = 0.021). Spearman's correlation analysis revealed significant correlations of FABP2 with endotoxin, TNF-[alpha], monocyte chemoattractant protein-1, IP10, and hs-CRP in the 289 postmenopausal women included in this study. Linear regression analysis revealed that hot-flash severity had significant assoiciations with FABP2 (P-trend = 0.002), but not with zonulin. After adjusting for body mass index, age, and menopause duration, multivariate linear regression analysis revealed the differences between HFs (% difference (95% confidence interval), 22.36 (8.04, 38.59), P = 0.01) and HF.sub.0 groups in terms of FABP2 levels. This study shows that hot flashes are significantly associated with FABP2 levels in postmenopausal women. It suggests that severe hot flashes are linked to an increase in intestinal barrier permeability and low-grade systemic inflammation.
Coenzyme Q10 Supplementation Increases Removal of the ATXN3 Polyglutamine Repeat, Reducing Cerebellar Degeneration and Improving Motor Dysfunction in Murine Spinocerebellar Ataxia Type 3
Coenzyme Q10 (CoQ10), a well-known antioxidant, has been explored as a treatment in several neurodegenerative diseases, but its utility in spinocerebellar ataxia type 3 (SCA3) has not been explored. Herein, the protective effect of CoQ10 was examined using a transgenic mouse model of SCA3 onset. These results demonstrated that a diet supplemented with CoQ10 significantly improved murine locomotion, revealed by rotarod and open-field tests, compared with untreated controls. Additionally, a histological analysis showed the stratification of cerebellar layers indistinguishable from that of wild-type littermates. The increased survival of Purkinje cells was reflected by the reduced abundance of TUNEL-positive nuclei and apoptosis markers of activated p53, as well as lower levels of cleaved caspase 3 and cleaved poly-ADP-ribose polymerase. CoQ10 effects were related to the facilitation of the autophagy-mediated clearance of mutant ataxin-3 protein, as evidenced by the increased expression of heat shock protein 27 and autophagic markers p62, Beclin-1 and LC3II. The expression of antioxidant enzymes heme oxygenase 1 (HO-1), glutathione peroxidase 1 (GPx1) and superoxide dismutase 1 (SOD1) and 2 (SOD2), but not of glutathione peroxidase 2 (GPx2), were restored in 84Q SCA3 mice treated with CoQ10 to levels even higher than those measured in wild-type control mice. Furthermore, CoQ10 treatment also prevented skeletal muscle weight loss and muscle atrophy in diseased mice, revealed by significantly increased muscle fiber area and upregulated muscle protein synthesis pathways. In summary, our results demonstrated biochemical and pharmacological bases for the possible use of CoQ10 in SCA3 therapy.
Far-infrared radiation protects viability in a cell model of Spinocerebellar Ataxia by preventing polyQ protein accumulation and improving mitochondrial function
Far infrared radiation (FIR) is currently investigated as a potential therapeutic strategy in various diseases though the mechanism is unknown. Presently, we tested if FIR mediates beneficial effects in a cell model of the neurodegenerative disease spinocerebellar ataxia type 3 (SCA3). SCA3 is caused by a mutation leading to an abnormal polyglutamine expansion (PolyQ) in ataxin-3 protein. The consequent aggregation of mutant ataxin-3 results in disruption of vital cell functions. In this study, neuroblastoma cells (SK-N-SH) was transduced to express either non-pathogenic ataxin-3-26Q or pathogenic ataxin-3-78Q proteins. The cells expressing ataxin-3-78Q demonstrated decreased viability and increased sensitivity to metabolic stress in the presence rotenone, an inhibitor of mitochondrial respiration. FIR exposure was found to protect against these effects. Moreover, FIR improved mitochondrial respiratory function, which was significantly compromised in ataxin-3-78Q and ataxin-3-26Q expressing cells. This was accompanied by decreased levels of mitochondrial fragmentation in FIR treated cells, as observed by fluorescence microscopy and protein expression analysis. Finally, the expression profile LC3-II, Beclin-1 and p62 suggested that FIR prevent the autophagy inhibiting effects observed in ataxin-3-78Q expressing cells. In summary, our results suggest that FIR have rescuing effects in cells expressing mutated pathogenic ataxin-3, through recovery of mitochondrial function and autophagy.
Relationships between Serum Uric Acid, Malondialdehyde Levels, and Carotid Intima-Media Thickness in the Patients with Metabolic Syndrome
Oxidative stress is the major cause of atherosclerosis and cardiovascular diseases. This cross-sectional study is aimed at determining if parallel serum markers of oxidative stress are related to carotid intima-media thickness (IMT). We enrolled 134 participants with varied metabolic syndrome (Met-S) scores (zero, n=21; one, n=19; two, n=27; three, n=26; four, n=25; five, n=16). Biochemical profiles and potential oxidative stress biomarkers malondialdehyde (MDA) and uric acid were measured in fasting plasma. We found that carotid IMT positively correlated with both MDA and uric acid levels. Multivariate analysis revealed that both MDA (p<0.05) and uric acid (p<0.01) levels were significantly associated with carotid IMT in participants whose Met-S scores were ≥1 or ≥2. However, only uric acid (p<0.01) levels were positively associated with carotid IMT in patients with metabolic syndrome. Linear regression model analysis revealed that the prediction accuracies for carotid IMT from MDA combined with uric acid and from a combination of MDA, uric acid, and Met-S score were 0.176 and 0.237, respectively. These were better than the predication accuracies from MDA (r2=0.075) and uric acid (r2=0.148) individually. These results suggest that measuring uric acid levels along with MDA biomarkers and Met-S scores may be a promising step in the development of an effective model for monitoring the severity of carotid IMT and atherosclerosis in the patients with metabolic syndrome.
Far-infrared Radiation Improves Motor Dysfunction and Neuropathology in Spinocerebellar Ataxia Type 3 Mice
Spinocerebellar ataxia type 3 (SCA3) is a polyglutamine neurodegenerative disease resulting from the misfolding and accumulation of a pathogenic protein, causing cerebellar dysfunction, and this disease currently has no effective treatments. Far-infrared radiation (FIR) has been found to protect the viability of SCA3 cells by preventing mutant ataxin-3 protein aggregation and promoting autophagy. However, this possible treatment still lacks in vivo evidence. This study assessed the effect of FIR therapy on SCA3 in vivo by using a mouse model over 28 weeks. Control mice carried a healthy wild-type ATXN3 allele that had a polyglutamine tract with 15 CAG repeats (15Q), whereas SCA3 transgenic mice possessed an allele with a pathological polyglutamine tract with expanded 84 CAG (84Q) repeats. The results showed that the 84Q SCA3 mice displayed impaired motor coordination, balance abilities, and gait performance, along with the associated loss of Purkinje cells in the cerebellum, compared with the normal 15Q controls; nevertheless, FIR treatment was sufficient to prevent those defects. FIR significantly improved performance in terms of maximal contact area, stride length, and base support in the forepaws, hindpaws, or both. Moreover, FIR treatment supported the survival of Purkinje cells in the cerebellum and promoted the autophagy, as reflected by the induction of autophagic markers, LC3II and Beclin-1, concomitant with the reduction of p62 and ataxin-3 accumulation in cerebellar Purkinje cells, which might partially contribute to the rescue mechanism. In summary, our results reveal that FIR confers therapeutic effects in an SCA3 transgenic animal model and therefore has considerable potential for future clinical use.
TNFalpha-mediated necroptosis in brain endothelial cells as a potential mechanism of increased seizure susceptibility in mice following systemic inflammation
Background Systemic inflammation is a potent contributor to increased seizure susceptibility. However, information regarding the effects of systemic inflammation on cerebral vascular integrity that influence neuron excitability is scarce. Necroptosis is closely associated with inflammation in various neurological diseases. In this study, necroptosis was hypothesized to be involved in the mechanism underlying sepsis-associated neuronal excitability in the cerebrovascular components (e.g., endothelia cells). Methods Lipopolysaccharide (LPS) was used to induce systemic inflammation. Kainic acid intraperitoneal injection was used to measure the susceptibility of the mice to seizure. The pharmacological inhibitors C87 and GSK872 were used to block the signaling of TNF[alpha] receptors and necroptosis. In order to determine the features of the sepsis-associated response in the cerebral vasculature and CNS, brain tissues of mice were obtained for assays of the necroptosis-related protein expression, and for immunofluorescence staining to identify morphological changes in the endothelia and glia. In addition, microdialysis assay was used to assess the changes in extracellular potassium and glutamate levels in the brain. Results Some noteworthy findings, such as increased seizure susceptibility and brain endothelial necroptosis, Kir4.1 dysfunction, and microglia activation were observed in mice following LPS injection. C87 treatment, a TNF[alpha] receptor inhibitor, showed considerable attenuation of increased kainic acid-induced seizure susceptibility, endothelial cell necroptosis, microglia activation and restoration of Kir4.1 protein expression in LPS-treated mice. Treatment with GSK872, a RIP3 inhibitor, such as C87, showed similar effects on these changes following LPS injection. Conclusions The findings of this study showed that TNF[alpha]-mediated necroptosis induced cerebrovascular endothelial damage, neuroinflammation and astrocyte Kir4.1 dysregulation, which may coalesce to contribute to the increased seizure susceptibility in LPS-treated mice. Pharmacologic inhibition targeting this necroptosis pathway may provide a promising therapeutic approach to the reduction of sepsis-associated brain endothelia cell injury, astrocyte ion channel dysfunction, and subsequent neuronal excitability. Keywords: Systemic inflammation, Sepsis, Seizure susceptibility, Kainic acid, Necroptosis, Astrocytic Kir4.1, Endothelia, Blood-brain barrier, Vascular integrity