Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
37 result(s) for "Liu, Li-Teh"
Sort by:
Evaluation of rapid diagnostic tests to detect dengue virus infections in Taiwan
Early diagnosis is important for the clinical management of diseases caused by dengue virus (DENV) infections. We investigated the performance of three commercially available DENV nonstructural protein 1 (NS1) rapid diagnostic tests (RDTs) using 173 acute-phase sera collected from dengue fever-suspected patients during the 2012-2013 DENV outbreak in Taiwan. The results of the NS1 RDTs were compared with those of qRT-PCR to calculate the sensitivity and specificity of the NS1 RDTs. The anti-DENV IgM and IgG RDT results were included to increase the probability of detecting acute DENV infection. The anti-DENV IgM/IgG RDT results were also compared with those of IgM/IgG captured ELISA. The sera from DENV qRT-PCR-positive patients were subjected to NS1 RDTs, as well as IgM/IgG captured ELISA. These results suggested that there was no significant difference in the sensitivities of the three commercially available DNEV NS1 RDTs; the SD NS1 RDT results showed the highest agreement with the qRT-PCR reference results, followed in order by the Bio-Rad and CTK NS1 RDT results when the specificity was considered. Inclusion of the IgM or IgG RDT results increased the likelihood of diagnosing either a primary or secondary DENV infection. NS1 RDTs were more sensitive for the detection of primary infections than secondary infections, related to DENV viremia levels determined by qRT-PCR. These results suggested that anti-DENV antibodies reduced the sensitivity of NS1 rapid tests. We also analyzed the sensitivity for the detection of different DENV serotypes, and the results suggested that the NS1 RDTs used in this study were valuable for rapid screening of acute DENV infection with DENV-1, DENV-2 and DENV-3. Our results suggest that the NS1 RDT is a good alternative to qRT-PCR analysis for timely dengue disease management and prevention in dengue-endemic regions where medical resources are lacking or during large dengue outbreaks. However, the relatively low sensitivity for DENV-4 might miss the detection of DENV-4-infected cases.
An RT-PCR panel for rapid serotyping of dengue virus serotypes 1 to 4 in human serum and mosquito on a field-deployable PCR system
Dengue fever, a mosquito-borne disease, is caused by dengue virus (DENV) which includes four major serotypes (DENV-1, -2, -3, and -4). Some serotypes cause more severe diseases than the other; severe dengue is associated with secondary infections by a different serotype. Timely serotyping can provide early warning of dengue epidemics to improve management of patients and outbreaks. A mobile insulated isothermal PCR (iiPCR) system is available to allow molecular detection of pathogens near points of need. In this study, side-by-side comparison with the CDC DENV-1-4 Real Time RT-PCR (qRT-PCR) was performed to evaluate the performance of four singleplex DENV-1-4 serotyping reverse transcription-iiPCR (RT-iiPCR) reagents for DENV subtyping on the mobile PCR system. The four RT-iiPCRs did not react with Zika virus and chikungunya virus; tests with serial dilutions of the four DENV serotypes made in human serum showed they had detection endpoints comparable to those of the reference method, indicating great analytical sensitivity and specificity. Clinical performance of the RT-iiPCR reagents was evaluated by testing 40 serum samples each (around 20 target serotype-positive and 20 DENV-negative); all four reagents had high agreement (97.5-100%) with the reference qRT-PCR. Moreover, testing of mosquitoes separately infected experimentally with each serotype showed that the four reagents detected specifically their target DENV serotypes in mosquito. With analytical and clinical performance comparable to the reference qRT-PCR assay, the four index RT-iiPCR reagents on the field-deployable PCR system can serve as a useful tool for DENV detection near points of needs.
The epidemiology and identification of risk factors associated with severe dengue during the 2023 dengue outbreak in Kaohsiung City, Taiwan
After the previous major dengue fever (DF) outbreaks in 2014 and 2015 in Taiwan, the second-largest DF outbreak re-emerged in 2023. A total of 178 patients with laboratory-confirmed dengue virus (DENV) infection, including 92 DENV-1 and 86 DENV-2 cases, were enrolled in this study conducted during the 2023 dengue outbreak in Kaohsiung City, Taiwan. This study aimed to analyze epidemiological characteristics, clinical severity, and risk factors for severe dengue (SD), as well as the diagnostic implications of the non-structural protein 1 (NS1) antigen rapid test. Patients infected with DENV-2 exhibited significantly older age, higher incidence of secondary infections, diabetes mellitus (DM), hypertension (HT), and longer hospital stays than patients infected with DENV-1. Multivariate analysis revealed that older age (age ≥65), secondary dengue infection, DM, and HT were significant independent predictors of SD. Compared with non-SD cases, SD patients were significantly more likely to be older (age ≥65), to exhibit a higher incidence of secondary infections and a greater prevalence of chronic diseases, including DM and HT. Notably, dengue-confirmed patients with negative NS1 results had a shorter duration since symptom onset (p < 0.001). Our DENV-1 and DENV-2 isolates are related to strains from neighboring Asian countries. Our findings emphasize the important factors of old age, secondary infections, and chronic diseases that contributed to dengue severity. We should meticulously manage these high-risk groups to prevent dengue progression. Screening incoming travelers for DF during the epidemic season will be an important measure to prevent the introduction of DENV into Taiwan.
A fully automated sample-to-answer PCR system for easy and sensitive detection of dengue virus in human serum and mosquitos
The insulated isothermal PCR (iiPCR) technology enables consistent PCR amplification and detection in a simple heating device. A pan-dengue virus (DENV) RT-iiPCR, targeting the 5' untranslated region, was validated previously on the semi-automated POCKIT combo system (involving separate devices for nucleic acid extraction and PCR amplification/detection) to offer performance comparable to a laboratory real-time PCR. Working on the same technologies, a compact automated sample-in-answer-out system (POCKIT Central Nucleic Acid Analyser) has been available commercially for iiPCR, minimizing human error risks and allowing easy molecular bio-detection near points of need. Here, we evaluated the analytical and clinical performance of the pan-DENV RT-iiPCR on the fully automated system by comparison to those on the semi-automated system. Testing sera containing serial diluted DENV-1, -2, -3, or -4 cell culture stock, the pan-DENV RT-iiPCR system had similar 100% detection endpoints on the two systems; i.e. at 1, 10, 1 and 10 PFU/ml, respectively, on the fully automated system, and at 10, 1, 10 and 10 PFU/ml, respectively, on the semi-automated system. Furthermore, both fully automated and semi-automated PCR system can detect all four DENV serotypes in mosquitos. Clinical performance of the reagent on the two systems was evaluated by testing 60 human serum samples. Both systems detected the same 40 samples (ten DENV-1, -2, -3, and -4 positive each) and did not detect the other 20; 100% agreement (κ = 1) was found between the two systems. With performance comparable to a previously validated system, the fully-automated PCR system allows applications of the pan-DENV reagent as a useful tool near points of need to facilitate easy, fast and effective detection of dengue virus and help mitigate versatile public health challenges in the control and management of dengue disease.
Dengue virus serotype did not contribute to clinical severity or mortality in Taiwan’s largest dengue outbreak in 2015
Background Dengue virus serotype 2 (DENV-2) was the major serotype in the 2015 dengue outbreak in Taiwan, while DENV-1 and DENV-3 were dominant between 2005 and 2014. We aimed to investigate whether DENV-2 contributed to disease severity and mortality in the outbreak in Kaohsiung city, Taiwan. Methods We collected serum samples from dengue patients to detect the presence of DENV and determine the serotypes by using quantitative reverse transcription-polymerase chain reaction. Our cohorts comprised 105 DENV-1-infected cases and 1,550 DENV-2-infected cases. Demographic data, DENV serotype, and comorbidities were covariates for univariate and multivariate analyses to explore the association with severity and mortality. Results The results suggested that DENV-1 persisted and circulated, while DENV-2 was dominant during the dengue outbreak that occurred between September and December 2015. However, DENV-2 did not directly contribute to either severity or mortality. Aged patients and patients with diabetes mellitus (DM) or moderate to severe chronic kidney disease (CKD) had a higher risk of developing severe dengue. The mortality of dengue patients was related to a higher Charlson comorbidity index score and severe dengue. Among DENV-2-infected patients and older patients, preexisting anti-dengue IgG, DM, and moderate to severe CKD were associated with severe dengue. Moreover, female sex and severe dengue were associated with a significantly higher risk of death. Conclusions Our findings highlight the importance of timely serological testing in elderly patients to identify potential secondary infections and focus on the meticulous management of elderly patients with DM or moderate to severe CKD to reduce dengue-related death.
Seroprevalence of dengue virus in two districts of Kaohsiung City after the largest dengue outbreak in Taiwan since World War II
Dengue virus (DENV) is the leading cause of arboviral diseases in humans worldwide. In this study, we investigated the seroprevalence of DENV infection in two districts of Kaohsiung City, a metropolis in southern Taiwan, where major dengue outbreaks have occurred in the past three decades. We enrolled 1,088 participants from the Sanmin and Nanzih districts after the dengue outbreak of 2015, the largest in Taiwan since World War II, and found an overall DENV seroprevalence of 12.4% (95% confidence interval: 10.5-13.4%) based on the InBios DENV IgG ELISA kit. The ratios of clinically inapparent to symptomatic infections were 2.86 and 4.76 in Sanmin and Nanzih districts, respectively. Consistent with higher case numbers during recent outbreaks, the DENV seroprevalence was higher in Sanmin district (16.4%) than in Nanzih district (6.9%), suggesting district differences in seroprevalence and highlighting the importance of screening the DENV immune status of each individual before using the currently available DENV vaccine, Dengvaxia. In the two districts, the seroprevalence rates increased from 2.1% (in the 30-39-year age group) to 17.1% (60-69) and 50% (70-79). The pattern of a sharp and significant increase in seroprevalence in the 70-79-year age group correlated with a dramatic increase in the proportion of clinically severe DENV infections among total dengue cases in that age group. This differed from observations in the Americas and Southeast Asia and suggested that a large proportion of monotypically immune individuals together with other risk factors may contribute to clinically severe dengue among the elderly in Taiwan.
The identification and phylogenetic analysis of SARS‐CoV‐2 delta variants in Taiwan
In Taiwan, coronavirus disease 2019 (COVID‐19) involving the delta variant occurred after that involving the alpha variant in 2021. In this study, we aimed to analyze the Delta variant. A total of 318 patients in Taiwan infected with delta variants were identified. The case fatality rate (CFR) of patients infected with delta variants was 0.94% in Taiwan compared with that of those infected with alpha variants (5.95%). The possible reasons for the low CFR might be hybrid immunity due to infection and rapid promotion of the COVID‐19 vaccination program during the alpha variant outbreak. We identified three 21J delta variants. Two long gene deletions were detected in these severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) isolates: ORF7aΔ91 in KMUH‐8 and SpikeΔ30 in KMUH‐9. Protein structure prediction indicates that ORF7aΔ91 results in malfunction of NS7a as an interferon antagonist and that SpikeΔ30 results in a truncated spike protein (N679–A688del), resulting in a lower infection rate compared with the delta variant without these deletions. The impact of these two deletions on SARS‐CoV‐2‐associated pathogenesis deserves further investigation. Delta variants still exist in many regions in the omicron era, and the backbone of the delta variant genome possibly spread worldwide in the form of delta‐omicron hybrids (deltacron; e.g., XBC.1 and XAY.2), which casts a potential threat to public health. Our study further highlighted the importance of more understanding of the delta variants.
Epidemiology and analysis of SARS-CoV-2 Omicron subvariants BA.1 and 2 in Taiwan
The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first detected in October 2021, possessed many mutations compared to previous variants. We aimed to identify and analyze SARS-CoV-2 Omicron subvariants among coronavirus disease 2019 (COVID-19) patients between January 2022 and September 2022 in Taiwan. The results revealed that BA.2.3.7, featuring K97E and G1251V in the spike protein compared with BA.2, emerged in March 2022 and persistently dominated between April 2022 and August 2022, resulting in the largest COVID-19 outbreak since 2020. The accumulation of amino acid (AA) variations, mainly AA substitution, in the spike protein was accompanied by increasing severity in Omicron-related COVID-19 between April 2022 and January 2023. Older patients were more likely to have severe COVID-19, and comorbidity was a risk factor for COVID-19-related mortality. The accumulated case fatality rate (CFR) dropped drastically after Omicron variants, mainly BA.2.3.7, entered Taiwan after April 2022, and the CFR was 0.16% in Taiwan, which was lower than that worldwide (0.31%) between April 2021 and January 2023. The relatively low CFR in Omicron-related COVID-19 patients can be attributed to adjustments to public health policies, promotion of vaccination programs, effective antiviral drugs, and the lower severity of the Omicron variant.
Low frequency of asymptomatic dengue virus-infected donors in blood donor centers during the largest dengue outbreak in Taiwan
To determine the prevalence of asymptomatic dengue virus-infected blood donors during the largest dengue outbreak in Taiwan history occurred in 2015, we examined the evidence of dengue virus (DENV) infection by the detection of DENV RNA genome using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR), DENV NS1 antigen using rapid diagnosis test (RDT) and anti-dengue antibody using IgM/IgG capture enzyme-linked immunosorbent assay (capture ELISA) and RDT in eight thousand serum samples from blood donations to the blood centers of the Taiwan Blood Services Foundation (TBSF) in Kaohsiung City and Tainan City during the largest dengue outbreak in Taiwan history occurred in 2015. Only one serum sample was positive for DENV RNA detection by using dengue-specific real-time RT-PCR, the virus was DENV-2 determined by serotype-specific real-time RT-PCR and sequencing, and the DENVs in the serum were confirmed as being infectious by a plaque assay. The recipient of this blood did not develop any dengue fever symptom on follow-up. None of the samples was NS1 RDT-reactive. Seventeen IgM-positive samples were identified. There was a low prevalence of asymptomatic confirmed or probable DENV-infected blood donors in our study (0.013% and 0.21%, respectively), and no symptomatic transfusion-transmitted dengue (TT dengue) was developed during the largest dengue outbreak in Taiwan history in highly endemic areas and periods.