Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
614 result(s) for "Liu, Shuyuan"
Sort by:
Mechanism of Nardostachyos Radix et Rhizoma–Salidroside in the treatment of premature ventricular beats based on network pharmacology and molecular docking
To analyse the mechanism of Nardostachyos Radix et Rhizoma–Salidroside in the treatment of Premature Ventricular Brats by using network pharmacology and molecular docking and to provide the basis for developing the use of experimental and clinical traditional Chinese medicine. The chemical compositions of Nardostachyos Radix et Rhizoma and Salidroside were determined, and their related targets were predicted. The disease-related targets were obtained by searching the common disease databases Genecards, OMIM, Drugbank and DisGeNET, and the intersection between the predicted targets and the disease targets was determined. Then using the STRING database to set up the protein‒protein interactions (PPIs) network between Nardostachyos Radix et Rhizoma–Salidroside and the common targets of PVB. An “herb-ingredient-target” network was constructed and analyzed by Cytoscape3.7.2 software. Using the metascape database to analysis the predicted therapeutic targets based on the GO and KEGG. Finally, molecular docking technology was used toconfirm the capacity of the primary active ingredients of the 2 herbs to bind to central targets using the online CB-Dock2 database. 41 active components of Nardostachyos Radix et Rhizoma–Salidroside were detected, with 420 potential targets of action, with a total of 1688 PVB targets, and the top 10 core targets of herb-disease degree values were AKT1, TNF, GAPDH, SRC, PPARG, EGFR, PTGS2, ESR1, MMP9, and STAT3. KEGG analysis indicated that its mechanism may be related to the calcium signalling pathway, cancer signalling pathway, AGE-RAGE signalling pathway and other pathways. Molecular docking suggested that main of the active ingredients of the Nardostachyos Radix et Rhizoma–Salidroside pairs were well bound to the core targets. Based on novel network pharmacology and molecular docking validation research methods, we revealed for the first time the potential mechanism of Nardostachyos Radix et Rhizoma–Salidroside in PVB therapy.
Air quality prediction based on factor analysis combined with Transformer and CNN-BILSTM-ATTENTION models
This study presents an innovative air quality prediction framework that integrates factor analysis with deep learning models for precise prediction of original variables. Using data from Beijing’s Tiantan station, factor analysis was applied to reduce dimensionality. We embed the factor score matrix into the Transformer model which leveraged self-attention to capture long-term dependencies, marking a significant advancement over traditional LSTM methods. Our hybrid framework outperforms these methods and surpasses models like Transformer, N-BEATS, and Informer combined with principal component and factor analysis. Residual analysis and evaluation confirmed superior accuracy and stability, with the maximum likelihood factor analysis Transformer model achieving an MSE of 0.1619 and of 0.8520 for factor 1, and an MSE of 0.0476 and of 0.9563 for factor 2. Additionally, we introduced a cutting-edge CNN-BILSTM-ATTENTION model with discrete wavelet transform, which optimizes predictive performance by extracting local features, capturing temporal dependencies, and enhancing key time steps. Its MSE was 0.0405, with values all above 0.94, demonstrating exceptional performance. This study emphasizes the groundbreaking integration of factor analysis with deep learning, transforming causal relationships into conditions for predictive models. Future plans include optimizing factor extraction, exploring external data sources, and developing more efficient deep learning architectures.
Science Fiction and Political Imagination: ELLs Co-constructing Critical Social Justice Narratives in the ELT Classroom
Engaging with social, political, and cultural topics can pose challenges in English language teaching classrooms. These sites represent linguistically diverse settings housing distinct ideologies. This article documents classroom interactions that began with exposure to a science fiction film and progressed to a discussion of contemporary sociopolitical concerns that resonated with ELLs. Drawing on this case study, the article explores how an instructor and her ELL students addressed sociopolitical topics in a science fiction–themed classroom. The author analyzes student–teacher and student–student interactions in the classroom and the instructor’s subsequent self-reflection. Findings suggest that, when adopting intellectually stimulating materials that foster ELLs’ agency in learning, teachers need scaffolding to meaningfully incorporate such tools into a critical pedagogical approach.
Reaction-passivation mechanism driven materials separation for recycling of spent lithium-ion batteries
Development of effective recycling strategies for cathode materials in spent lithium-ion batteries are highly desirable but remain significant challenges, among which facile separation of Al foil and active material layer of cathode makes up the first important step. Here, we propose a reaction-passivation driven mechanism for facile separation of Al foil and active material layer. Experimentally, >99.9% separation efficiency for Al foil and LiNi 0.55 Co 0.15 Mn 0.3 O 2 layer is realized for a 102 Ah spent cell within 5 mins, and ultrathin, dense aluminum-phytic acid complex layer is in-situ formed on Al foil immediately after its contact with phytic acid, which suppresses continuous Al corrosion. Besides, the dissolution of transitional metal from LiNi 0.55 Co 0.15 Mn 0.3 O 2 is negligible and good structural integrity of LiNi 0.55 Co 0.15 Mn 0.3 O 2 is well-maintained during the processing. This work demonstrates a feasible approach for Al foil-active material layer separation of cathode and can promote the green and energy-saving battery recycling towards practical applications. Separating active cathode materials from current collectors poses a critical challenge in battery recycling. Here, the authors develop a facile strategy that relies on a reaction-passivation mechanism to effectively separate the aluminum foil and cathode active material in spent lithium-ion batteries.
Quantitative attribution of spatio-temporal pattern of pm2.5 concentration based on geodetector and GWR model: Evidence from China’s three major urban agglomerations
Clarifying the spatio-temporal evolution of PM2.5 concentration law and its driving mechanism is crucial for the prevention and control of air pollution in urban agglomerations, also helping promote their high-quality development. Based on remote sensing and statistics of urban agglomerations in China’s Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD) from 2005 to 2020, the paper analyses the evolution characteristics of the pollution concentration pattern and identifies the influencing factors through spatial analysis method combining the geodetector and geographically weighted regression (GWR) model. As the results show, during the study period: (1) Temporal Trends: annual PM2.5 concentrations exhibited significant declines, with BTH decreasing from 1004.71 μg/m 3 (2006) to 528 μg/m 3 (2020), YRD from 1434.81 μg/m 3 (2008) to 621 μg/m 3 , and PRD from 405.02 μg/m 3 (2007) to 292 μg/m 3 . The ranking remained YRD > BTH > PRD throughout the study period. (2) Spatial Heterogeneity: Spatial clustering (Moran’s I: 0.286–0.729, p < 0.05) dominated all regions. BTH showed a “high-south” pattern (e.g., Xingtai: 78.3 μg/m 3 vs. Qinhuangdao: 34.2 μg/m 3 ), YRD displayed “high-northwest” characteristics (Hefei: 68.5 μg/m 3 vs. Ningbo: 42.1 μg/m 3 ), while PRD exhibited a west-east gradient (Foshan: 49.8 μg/m 3 vs. Shenzhen: 25.6 μg/m 3 ). (3) The evolution of PM2.5 concentration in three urban agglomerations is generally positive autocorrelative aggregative distribution, and aggregation types include “high-high”, “low-low” and “high-low”. (4) The measurement of geographical detector indicates the differentiation of PM2.5 concentration is affected by both natural geography and socio-economic factors, and the former ones have stronger driving forces. (5) The measurement of GWR model indicates temperature, precipitation, vegetation coverage, urban expansion, industrial structure, and energy efficiency are main influencing factors of PM2.5 concentration pattern, and the degree of influence of these factors is different.
Genome-Wide Characterization and Expression Analysis of Pathogenesis-Related 1 (PR-1) Gene Family in Tea Plant (Camellia sinensis (L.) O. Kuntze) in Response to Blister-Blight Disease Stress
Pathogenesis-related 1 (PR-1) proteins, which are defense proteins in plant–pathogen interactions, play an important role in the resistance and defense of plants against diseases. Blister blight disease is caused by Exobasidium vexans Massee and a major leaf disease of tea plants (Camellia sinensis (L.) O. Kuntze). However, the systematic characterization and analysis of the PR-1 gene family in tea plants is still lacking, and the defense mechanism of this family remains unknown. In this study, 17 CsPR-1 genes were identified from the tea plant genome and classified into five groups based on their signal peptide, isoelectric point, and C-terminus extension. Most of the CsPR-1 proteins contained an N-terminal signal peptide and a conserved PR-1 like domain. CsPR-1 genes comprised multiple cis-acting elements and were closely related to the signal-transduction pathways involving TCA, NPR1, EDS16, BGL2, PR4, and HCHIB. These characteristics imply an important role of the genes in the defense of the tea plant. In addition, the RNA-seq data and real-time PCR analysis demonstrated that the CsPR-1-2, -4, -6, -7, -8, -9, -10, -14, -15, and -17 genes were significantly upregulated under tea blister-blight stress. This study could help to increase understanding of CsPR-1 genes and their defense mechanism in response to tea blister blight.
Oncosis is the predominant type of cell death in rhabdomyolysis following exertional heat stroke
Rhabdomyolysis (RM), particularly heat exhaustion-associated rhabdomyolysis (ehsRM), is a significant clinical issue associated with high mortality and healthcare costs. However, the cellular death mechanisms remain incompletely understood. Oncosis, a form of passive cell death distinct from apoptosis, is characterized by cell swelling and triggered by ATP depletion. Additionally, porimin, a specific biomarker, can uniquely identify oncosis. This study aims to investigate the role and mechanisms of oncosis in both in vitro and in vivo models of ehsRM. This study aims to investigate the role and mechanisms of oncosis in both in vitro and in vivo models of ehsRM. In the in vitro study, 6-8-week-old male rats were subjected to treadmill exercise at an ambient temperature of (39.5 ± 0.5)°C and relative humidity of 50%-60%, at a speed of 15 meters per minute until their core body temperature (Tc) reached 43.0°C to establish a heatstroke animal model. Skeletal muscle and blood samples from the gastrocnemius were collected for cytokine, biochemical, and histopathological analyses. Pathological findings revealed decreased muscle fiber density, structural disarray, swelling, degeneration, and hemorrhage. Ultrastructural analysis showed cell swelling, structural disarray, cytoplasmic vacuolation, mitochondrial swelling and degeneration, loss of cristae, and nuclear degeneration, indicating myocyte swelling and necrosis. Porimin, CytC, Bax, and caspase-1 expression increased, while Bcl-2 expression decreased. JC-1 staining indicated a decline in mitochondrial membrane potential and dysfunction. ATP levels decreased, and reactive oxygen species (ROS) production increased. In the in vivo study, HSKMC cells were subjected to 4 hours of heat shock at 43°C to establish a heatstroke-induced rhabdomyolysis cell model. Electron microscopy revealed cell swelling, cytoplasmic vacuolation, mitochondrial swelling and degeneration, and nuclear swelling; late-stage (necrotic-like death) was characterized by nucleolar dissolution, nuclear fragmentation, chromatin condensation, and collapse of cytoplasmic structures. After 24 hours post-modeling, the proportion of double-positive cells (porimin + /PI+) and ROS levels significantly increased, as did porimin expression, while mitochondrial membrane potential and ATP levels significantly decreased. The proportion of Annexin V + /PI + double-positive cells and caspase-3 levels showed no significant changes. In both in vitro and in vivo studies, oncosis played a crucial role in ehsRM. Pathological and ultrastructural analyses demonstrated cell swelling, structural disarray, mitochondrial damage, and nuclear degeneration. Porimin, CytC, Bax, and caspase-1 expression increased, while Bcl-2 expression decreased. ATP levels decreased, and ROS production increased. In the in vivo study, the proportion of porimin + /PI + double-positive cells and ROS levels significantly increased, while mitochondrial membrane potential and ATP levels significantly decreased. The proportion of Annexin V + /PI + double-positive cells and caspase-3 levels showed no significant changes. Oncosis is predominant in ehsRM, involving mitochondrial dysfunction, ATP depletion, and oxidative stress.
Visible Light Motivated the Photocatalytic Degradation of P-Nitrophenol by Ca2+-Doped AgInS2
4-Nitrophenol (4-NP) is considered a priority organic pollutant with high toxicity. Many authors have been committed to developing efficient, green, and environmentally friendly technological processes to treat wastewater containing 4-NP. Here, we investigated how the addition of Ca2+ affects the catalytic degradation of 4-NP with AgInS2 when exposed to light. We synthesized AgInS2 (AIS) and Ca2+-doped AgInS2 (Ca-AIS) with varying amounts of Ca2+ using a low-temperature liquid phase method. The SEM, XRD, XPS, HRTEM, BET, PL, and UV-Vis DRS characteristics were employed to analyze the structure, morphology, and optical properties of the materials. The effects of different amounts of Ca2+ on the photocatalytic degradation of 4-NP were investigated. Under visible light illumination for a duration of 120 min, a degradation rate of 63.2% for 4-Nitrophenol (4-NP) was achieved. The results showed that doping with an appropriate amount of Ca2+ could improve the visible light catalytic activity of AIS. This work provides an idea for finding suitable cheap alkaline earth metal doping agents to replace precious metals for the improvement of photocatalytic activities.
Synergistic Effect of Fluconazole and Calcium Channel Blockers against Resistant Candida albicans
Candidiasis has increased significantly recently that threatens patients with low immunity. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of fungal resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapy is one of the most widely used and effective strategy to alleviate this problem. In this paper, we were aimed to evaluate the combined antifungal effects of four CCBs (calcium channel blockers), amlodipine (AML), nifedipine (NIF), benidipine (BEN) and flunarizine (FNZ) with fluconazole against C. albicans by checkerboard and time-killing method. In addition, we determined gene (CCH1, MID1, CNA1, CNB1, YVC1, CDR1, CDR2 and MDR1) expression by quantitative PCR and investigated the efflux pump activity of resistant candida albicans by rhodamine 6G assay to reveal the potential mechanisms. Finally, we concluded that there was a synergy when fluconazole combined with the four tested CCBs against resistant strains, with fractional inhibitory concentration index (FICI) <0.5, but no interaction against sensitive strains (FICI = 0.56 ~ 2). The mechanism studies revealed that fluconazole plus amlodipine caused down-regulating of CNA1, CNB1 (encoding calcineurin) and YVC1 (encoding calcium channel protein in vacuole membrane).
Comparative Assessment of the Antibacterial Efficacies and Mechanisms of Different Tea Extracts
Tea is a popular beverage known for its unique taste and vast health benefits. The main components in tea change greatly during different processing methods, which makes teas capable of having different biological activities. We compared the antibacterial activity of four varieties of tea, including green, oolong, black, and Fuzhuan tea. All tea extracts showed antibacterial activity and Gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus) were more susceptible to tea extracts than Gram-negative bacteria (Escherichia coli and Salmonella typhimurium). Green tea extracts inhibited bacterial pathogens much more effectively in all four varieties of tea with the minimum inhibitory concentration (MIC) values at 20 mg/mL, 10 mg/mL, 35 mg/mL, and 16 mg/mL for E. faecalis, S. aureus, E. coli, and S. typhimurium, respectively. Catechins should be considered as the main antibiotic components of the four tea extracts. Total catechins were extracted from green tea and evaluated their antibacterial activity. Additional studies showed that the catechins damaged the cell membrane and increased cell membrane permeability, leading to changes in the relative electrical conductivity and the release of certain components into the cytoplasm. Tea extracts, especially green tea extracts, should be considered as safe antibacterial food additives.